![2020年苏科版九年级数学上册 期末复习试卷二(含答案)第1页](http://img-preview.51jiaoxi.com/2/3/5713395/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2020年苏科版九年级数学上册 期末复习试卷二(含答案)第2页](http://img-preview.51jiaoxi.com/2/3/5713395/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2020年苏科版九年级数学上册 期末复习试卷二(含答案)第3页](http://img-preview.51jiaoxi.com/2/3/5713395/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2020年苏科版九年级数学上册 期末复习试卷二(含答案)
展开
2020年苏科版九年级数学上册 期末复习试卷二一、选择题1.(3分)下列事件属于随机事件的是( )A.任意画一个三角形,其内角和为180°B.太阳从东方升起C.掷一次骰子,向上一面点数是7D.经过有交通信号灯的路口,遇到红灯2.(3分)为了考查某种小麦的长势,从中抽取了10株麦苗,测得苗高(单位:cm)为16,9,14,11,12,10,16,8,17,19,则这组数据的中位数和极差分别是( )A.13,11 B.14,11 C.12,11 D.13,163.(3分)方程2x2﹣5x+3=0的根的情况是( )A.有两个相等的实数根 B.有两个不相等的实数根C.无实数根 D.两根异号4.(3分)在Rt△ABC中,∠C=90°,AC=5,BC=12,⊙C的半径为,则⊙C与AB的位置关系是( )A.相切 B.相交 C.相离 D.无法确定5.(3分)设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+3上的三点,则y1,y2,y3的大小关系为( )A.y1>y2>y3 B.y1>y3>y2 C.y3>y2>y1 D.y3>y1>y26.(3分)⊙O的半径为10,两平行弦AC,BD的长分别为12,16,则两弦间的距离是( )A.2 B.14 C.6或8 D.2 或147.(3分)小明从二次函数y=ax2+bx+c的图象(如图)中观察得到了下面五条信息:①abc>0;②2a﹣3b=0;③b2﹣4ac>0;④a+b+c>0;⑤4b<c则其中结论正确的个数是( )A.2个 B.3个 C.4个 D.5个8.(3分)如图,平面直角坐标系中O是原点,平行四边形ABCO的顶点A、C的坐标分别(8,0)、(3,4),点D,E把线段OB三等分,延长CD、CE分别交OA、AB于点F,G,连接FG.则下列结论:①F是OA的中点;②△OFD与△BEG相似;③四边形DEGF的面积是;④OD=.正确的个数是( )A.4个 B.3个 C.2个 D.1个二、填空题9.(3分)如图,已知∠A=∠D,要使△ABC∽△DEF,还需添加一个条件,你添加的条件是 .(只需写一个条件,不添加辅助线和字母)10.(3分)据有关实验测定,当气温处于人体正常体温(37℃)的黄金比值时,人体感到最舒适.这个气温约为 ℃(精确到1℃).11.(3分)如果一个多边形的内角和是它的外角和的2倍,那么这个多边形的边数为 .12.(3分)一组数据﹣1,﹣2,x,1,2的平均数为0,则这组数据的方差为 .13.(3分)某种冰箱经两次降价后从原来的每台2500元降为每台1600元,求平均每次降价的百分率为 .14.(3分)已知⊙O半径为1,A、B在⊙O上,且AB=,则AB所对的圆周角为 o.15.(3分)如图,D是△ABC的边BC上一点,AB=4,AD=2,∠DAC=∠B.如果△ABD的面积为15,那么△ACD的面积为 .16.(3分)若⊙O是等边△ABC的外接圆,⊙O的半径为2,则等边△ABC的边长为 .17.(3分)在平面直角坐标系中,抛物线y=a(x﹣2)2﹣经过原点O,与x轴的另一个交点为A.将抛物线在x轴下方的部分沿x轴折叠到x轴上方,将这部分图象与原抛物线剩余部分的图象组成的新图象记为G,过点B(0,1)作直线l平行于x轴,当图象G在直线l上方的部分对应的函数y随x增大而增大时,x的取值范围是 .18.(3分)如图,在△ABC中,∠CAB=90°,AB=6,AC=4,CD是△ABC的中线,将△ABC沿直线CD翻折,点B′是点B的对应点,点E是线段CD上的点,如果∠CAE=∠BAB′,那么CE的长是 .三、解答题19.(8分)解方程:(1)x2+2x=1; (2)(x﹣3)2+2(x﹣3)=0. 20.(8分)已知关于x的方程x2+2x+a﹣2=0.(1)若该方程有两个不相等的实数根,求实数a的取值范围;(2)当该方程的一个根为1时,求a的值及方程的另一根. 21.(8分)有四张规格、质地相同的卡片,它们背面完全相同,正面图案分别是A.菱形,B.平行四边形,C.线段,D.角,将这四张卡片背面朝上洗匀后(1)随机抽取一张卡片图案是轴对称图形的概率是 ;(2)随机抽取两张卡片(不放回),求两张卡片卡片图案都是中心对称图形的概率,并用树状图或列表法加以说明. 22.(8分)某市发生地震后,某校学生会向全校1 900名学生发起了捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了统计图,如图①和②,请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为 ,图①中m的值是 ;(2)求本次调查获取的样本数据的平均数;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数. 23.(10分)如图,在正方形网格图中建立一直角坐标系,一条圆弧经过网格点A、B、C,请在网格中进行下列操作:(1)请在图中确定该圆弧所在圆心D点的位置,D点坐标为 ;(2)连接AD、CD,求⊙D的半径及扇形DAC的圆心角度数;(3)若扇形DAC是某一个圆锥的侧面展开图,求该圆锥的底面半径. 24.(10分)如图,BE是⊙O的直径,点A在EB的延长线上,弦PD⊥BE,垂足为C,连接OD,∠AOD=∠APC.(1)求证:AP是⊙O的切线;(2)若⊙O的半径是4,AP=4,求图中阴影部分的面积. 25.(10分)某商品的进价为每件20元,售价为每件25元时,每天可卖出250件.市场调查反映:如果调整价格,一件商品每涨价1元,每天要少卖出10件.(1)若某天的销售利润为2000元,为最大限度让利于顾客,则该商品销售价是多少?(2)求销售单价为多少元时,该商品每天的销售利润最大,请说明理由. 26.(10分)如图,直角梯形ABCD中,∠B=90°,AD∥BC,BC=2AD,点E为边BC的中点.(1)求证:四边形AECD为平行四边形;(2)在CD边上取一点F,联结AF、AC、EF,设AC与EF交于点G,且∠EAF=∠CAD.求证:△AEC∽△ADF;(3)在(2)的条件下,当∠ECA=45°时.求:FG:EG的比值. 27.(12分)如图,已知在平面直角坐标系xOy中,抛物线y=ax2+2x+c与x轴交于点A(﹣1,0)和点B,与y轴相交于点C(0,3),抛物线的对称轴为直线l.(1)求这条抛物线的关系式,并写出其对称轴和顶点M的坐标;(2)如果直线y=kx+b经过C、M两点,且与x轴交于点D,点C关于直线l的对称点为N,试证明四边形CDAN是平行四边形;(3)点P在直线l上,且以点P为圆心的圆经过A、B两点,并且与直线CD相切,求点P的坐标.
参考答案1.D.2.A.3.B.4.C.5.A.6.D.7.B.8.C.9.答案为AB∥DE.10.答案为23.11.答案为:6.12.答案为:2.13.答案为20%.14.答案为:45或135.15.答案是:5.16.答案为:2.17.答案为1<x<2或x>2+.18答案为.19.解:(1)方程配方得:x2+2x+1=2,即(x+1)2=2,开方得:x+1=±,解得:x1=﹣1+,x2=﹣1﹣;(2)分解因式得:(x﹣3)(x﹣3+2)=0,解得:x1=3,x2=1.20.解:(1)∵b2﹣4ac=(2)2﹣4×1×(a﹣2)=12﹣4a>0,解得:a<3.∴a的取值范围是a<3;(2)设方程的另一根为x1,由根与系数的关系得:,解得:,则a的值是﹣1,该方程的另一根为﹣3.21.解:(1)菱形,轴对称图形;平行四边形,不是轴对称图形;线段,轴对称图形;角,轴对称图形,则随机抽取一张卡片图案是轴对称图形的概率是;故答案为:;(2)列表如下:其中A,B,C为中心对称图形,D不为中心对称图形, ABCDA﹣﹣﹣(B,A)(C,A)(D,A)B(A,B)﹣﹣﹣(C,B)(D,B)C(A,C)(B,C)﹣﹣﹣(D,C)D(A,D)(B,D)(C,D)﹣﹣﹣所有等可能的情况有12种,其中都为中心对称图形的有6种,则P==.22.解:(1)根据条形图4+16+12+10+8=50(人),m=100﹣20﹣24﹣16﹣8=32,故答案为:50、32;(2)∵=(5×4+10×16+15×12+20×10+30×8)=16,∴这组数据的平均数为16;(3)∵在50名学生中,捐款金额为10元的学生人数比例为32%,∴由样本数据,估计该校1900名学生中捐款金额为10元的学生人数比例为32%,有1900×32%=608,∴该校本次活动捐款金额为10元的学生约有608名.23.解:(1)如图;D(2,0)(4分)(2)如图;;作CE⊥x轴,垂足为E.∵△AOD≌△DEC,∴∠OAD=∠CDE,又∵∠OAD+∠ADO=90°,∴∠CDE+∠ADO=90°,∴扇形DAC的圆心角为90度; (3)∵弧AC的长度即为圆锥底面圆的周长.l弧=,设圆锥底面圆半径为r,则,∴.24.(1)证明:连接OP,如图∵OD=OP∴∠OPD=∠ODP∵∠APC=∠AOD∴∠APC+∠OPD=∠ODP+∠AOD,又∵PD⊥BE∴∠ODP+∠AOD=90°∴∠APC+∠OPD=90°即∠APO=90°∴PO⊥AP ∴AP是⊙O的切线(2)解:在Rt△APO中,∵AP=,PO=4,∴AO=,即,∴∠A=30°,∴∠POA=60°,∴∠OPC=30°在Rt△OPC中,∵OC=2,OP=4,∴PC=∴又∵PD⊥BE∴PC=CD∴∠POD=120°,,∴S阴影=S扇形OPBD﹣S△OPD=.25.解:(1)设销售价格为x元时,当天销售利润为2000元,则(x﹣20)•[250﹣10(x﹣25)]=2000,整理,得:x2﹣70x+1200=0,解得:x1=30,x2=40(舍去),答:该商品销售价是30元/件;(2)设该商品每天的销售利润为y,则y=(x﹣20)•[250﹣10(x﹣25)]=﹣10x2﹣700x+10000=﹣10(x﹣35)2+2250,答:当销售单价为35元/件时,销售利润最大.26.解:(1)∵BC=2AD,点E为BC中点,∴BC=2CE,∴AD=CE,∵AD∥CE,∴四边形AECD为平行四边形;(2)∵四边形AECD为平行四边形,∴∠D=∠AEC,∵∠EAF=∠CAD,∴∠EAC=∠DAF,∴△AEC∽△ADF,(3)设AD=BE=CE=a,由∠ECA=45°,得到△ABC为等腰直角三角形,即AB=BC=2a,∴在Rt△ABE中,根据勾股定理得:AE==a,∵△AEC∽△ADF,∴=,即=,∴DF=a,∴CF=CD﹣DF=a﹣a=a,∵AE∥DC,∴===. 27.解:(1)∵抛物线y=ax2+2x+c经过点A(﹣1,0)和点C(0,3),∴,∴,∴y=﹣x2+2x+3=﹣(x﹣1)2+4,对称轴为直线x=1,顶点M(1,4);(2)如图1,∵点C关于直线l的对称点为N,∴N(2,3),∵直线y=kx+b经过C、M两点,∴,∴,∴y=x+3,∵y=x+3与x轴交于点D,∴D(﹣3,0),∴AD=2=CN又∵AD∥CN,∴CDAN是平行四边形;(3)设P(1,a),过点P作PH⊥DM于H,连接PA、PB,如图2,则MP=4﹣a,又∠HMP=45°,∴HP=AP=,Rt△APE中,AP2=AE2+PE2,即:,解得:,∴P1(1,﹣4+2),P2(1,﹣4﹣2).
![英语朗读宝](http://img.51jiaoxi.com/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)