![2020年苏科版八年级数学上册 期中复习试卷九(含答案)第1页](http://img-preview.51jiaoxi.com/2/3/5713446/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2020年苏科版八年级数学上册 期中复习试卷九(含答案)第2页](http://img-preview.51jiaoxi.com/2/3/5713446/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2020年苏科版八年级数学上册 期中复习试卷九(含答案)第3页](http://img-preview.51jiaoxi.com/2/3/5713446/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2020年苏科版八年级数学上册 期中复习试卷九(含答案)
展开2020年苏科版八年级数学上册 期中复习试卷九一、选择题(本大题共6小题,每小题2分,共12分)1.在下面的四个京剧脸谱中,不是轴对称图形的是( ▲ )2.下列长度的三条线段能组成直角三角形的是( ▲ )A.1,2,3 B.2,3,4 C.3,4,5 D.5,6,73.等腰三角形两边长分别为2和4,则这个等腰三角形的周长为( ▲ )A.6 B.8 C.10 D.8或104.如图,在数轴上表示实数+1的点可能是( ▲ )A.P B.Q C.R D.S5.如图是跷跷板的示意图,支柱OC与地面垂直,点O是AB的中点,AB绕着点O上下转动.当A端落地时,∠OAC=20°,跷跷板上下可转动的最大角度(即∠A′OA)是( ▲ )A.20° B.40° C.60° D.80°6.如图,在四边形ABCD中,AB=AC=BD,AC与BD相交于H,且AC⊥BD.①AB∥CD;②△ABD≌△BAC;③AB2+CD2=AD2+CB2;④∠ACB+∠BDA=135°.其中真命题的个数是( ▲ )A.1 B.2 C.3 D.4 二、填空题7.的相反数是 ▲ .8.一个罐头的质量约为2.026 kg,用四舍五入法将2.026 kg精确到0.01 kg可得近似值 ▲ kg.9.如图,已知点A,D,C,F在同一条直线上,AB=DE,∠B=∠E,要使△ABC≌△DEF,还需要添加一个条件是 ▲ .10.如图,在Rt△ABC中,CD是斜边AB上的中线,若AB=2,则CD= ▲ .11.如图,在△ABC中,AB=AC,∠B=66°,D,E分别为AB,BC上一点,AF∥DE,若∠BDE=30°,则∠FAC的度数为 ▲ .12.如图,一块形如“Z”字形的铁皮,每个角都是直角,且AB=BC=EF=GF=1,CD=DE=GH=AH=3,现将铁片裁剪并拼接成一个和它等面积的正方形,则正方形的边长是 ▲ .13.如图,△ABC,△ADE均是等腰直角三角形,BC与DE相交于F点,若AC=AE=1,则四边形AEFC的周长为 ▲ 14.如图,△ABC是边长为6的等边三角形,D是BC上一点,BD=2,DE⊥BC交AB于点E,则AE= ▲ .15.如图,在△ABC中,AB=4,AC=3,BC=5,AD是△ABC的角平分线,DE⊥AB于点E,则DE长是 ▲ .16.如图,在△ABC中,∠C=90°,∠A=34°,D,E分别为AB,AC上一点,将△BCD,△ADE沿CD,DE翻折,点A,B恰好重合于点P处,则∠ACP= ▲ .三、解答题(本大题共10题,共68分)17.(6分)计算(1)(-2)2+-; (2)+(π-3)0-. 18.(6分)求下列各式中的x(1)(x+2)2=4; (2)1+(x-1)3=-7. 19.(6分)请在下图中画出三个以为腰的等腰.(要求:1.锐角三角形,直角三角形,钝角三角形各画一个;2.点在格点上.) 20.(6分)如图,AC⊥BC,BD⊥AD,垂足分别为C,D,AC=BD.求证BC=AD. 21.(6分)如图,在△ABC中,边AB,AC的垂直平分线相交于点P.求证PB=PC. 22.(6分)如图,已知点P为△ABC边BC上一点.请用直尺和圆规作一条直线EF,使得A关于EF的对称点为P.(保留作图痕迹,不写作法) 23.(7分)如图,在长方形ABCD中,AB=8,AD=10,点E为BC上一点,将△ABE沿AE折叠,使点B落在长方形内点F处,且DF=6,求BE的长. 24.(8分)如图,在△ABC中,AB=AC,∠A=48°,点D、E、F分别在BC、AB、AC边上,且BE=CF,BD=CE,求∠EDF的度数. 25.(8分)阅读理解:求的近似值.解:设=10+x,其中0<x<1,则107=(10+x)2,即107=100+20x+x2.因为0<x<1,所以0<x2<1,所以107≈100+20x,解之得x≈0.35,即的近似值为10.35.理解应用:利用上面的方法求的近似值(结果精确到0.01). 26.(9分)如图,在四边形ABCD中,AB∥CD,∠D=90°,若AD=3,AB=4,CD=8,点P为线段CD上的一动点,若△ABP为等腰三角形,求DP的长. 参考答案一、选择题(每小题2分,共计12分)题号123456答案DCCBBB 二、填空题(每小题2分,共计20分)7.-.8.2.23.9.BC=EF(答案不惟一).10.1.11.18.12..13.2.14.2.15..16.22. 三、解答题(本大题共10小题,共计68分)17.(本题6分)解:(1)(-2)2+-=4+4-2=6·································································3分(2)+(π-3)0-= +1-(-1) =-.························································6分 18.(本题6分)解:(1)x-2=±2····················································1分 x=±2+2x=0,x2=4.·························································3分 (2)(x-1)3=-8···················································4分 x-1=-2·····················································5分x=-1.····························································6分 19.(本题6分)图略. 20.(本题6分)证明:∵ AC⊥BC,BD⊥AD,∴ ∠C=∠D=90°.在Rt△ABC和Rt△BAD中, ∴ Rt△ABC≌Rt△BAD(HL).∴ BC=AD.·························································6分 21.(本题6分)证明:∵ 边AB,AC的垂直平分线相交于点P, ∴ PA=PB,PA=PC.∴ PB=PC.·························································6分 22.(本题6分)图略. 23.(本题7分)解:∵ 将△ABE沿AE折叠,使点B落在长方形内点F处,∴ ∠AFE=∠B=90°,AB=AF=8,BE=FE.在△ADF中,∵ AF2+DF2=62+82=100=102=AD2,∴ △ADF是直角三角形,∠AFD=90°.····································3分∴ D,F,E在一条直线上.·············································4分设BE=x,则EF=x,DE=6+x,EC=10-x,在Rt△DCE中,∠C=90°,∴ CE2+CD2=DE2,即 (10-x) 2+82=(6+x) 2.∴ x=4.∴ BE=4.··························································7分 24.(本题8分) (1)证明:∵ AB=AC,∠A=48°,∴ ∠B=∠C=(180°-48°)÷2=66°.······································2分在△DBE和△ECF中,∴ △DBE≌△ECF(SAS).···············································4分∴ ∠FEC=∠BDE,∴ ∠DEF=180°-∠BED-∠FEC=180°-∠DEB-∠EDB=∠B=66°.·········································6分∵ △DBE≌△ECF(SAS),∴ DE=FE.∴△DEF是等腰三角形.∴ ∠EDF =(180°-66°)÷2=57°.·······································8分 25.(本题8分)解:设=10-x,其中0<x<1,则97=(10-x)2,即97=100-20x+x2.因为0<x<1,所以0<x2<1,所以97≈100-20x,解之得x≈0.15,即的近似值为9.85.······················8分 (设=9+x,求出的近似值为9.89也给满分.) 26.(本题9分)解:①AB=AP时,DP1==;·················································2分②BP=AP时,DP2=AB=×4=2;···············································4分③BA=BP时,过点B作BH⊥CD于H,则BH=AD=3,由勾股定理得,FP==,DP3=4-,或者DP4=4+.综上所述,DP的值为,2,4-,或者4+.····································9分