2020年北师大版八年级数学上册 期末复习卷九(含答案)
展开2020年北师大版八年级数学上册 期末复习卷九
第Ⅰ卷 (选择题 共60分)
一.选择题(本大题共12小题,每小题5分,满分60分。在每小题给出的四个选项中,只有一项是符合题目要求的)
1.4的算术平方根是( )
A.2 B.-2 C.±2 D.±
2.若a>b,则下列各式中一定成立的是( )
A.a-3<b-3 B. C.-3a<-3b D. am>bm
3.在实数中,无理数的个数为( )
A.1个 B.2个 C.3个 D.4个
4.将直角坐标系中的点(-1,-3)向上平移4个单位,再向右平移2个单位后的点的坐标为( )
A.(3,-1) B.(-5,-1) C.(-3,1) D.(1,1)
5.若正比例函数的图像经过点(-1,2),则k的值为( )
A. B. C.-2 D.2
6.下列条件中,不能判断△ABC是直角三角形的是( )
A.a:b:c=3:4:5 B.∠A:∠B:∠C=3:4:5
C.∠A+∠B=∠C D.a:b:c=1:2:
7.如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是( )
A.30° B.40° C.50° D.60°
第7题图 第8题
8.小明家1至6月份的用水量统计图如图所示,关于这组数据,下列说法错误的是( )
A.众数是6吨 B.中位数是5吨 C.平均数是5吨 D.方差是吨
9.如果点P(x-4,x+3)在平面直角坐标系的第二象限内,那么x的取值范围在数轴上可表示为( )
10.一次函数满足,且y随x的增大而减小,则此函数的图像一定不经过( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
11.关于x,y的方程组的解是 ,其中y的值被盖住了。不过仍能求出m,则m的值是( )
A. B. C. D.
12.如图,已知点A(1,1),B(2,-3),点P为x轴上一点,当|PA-PB|最大值时,点P的坐标为( )
A.(-1,0) B.(,0) C.(,0) D.(1,0)
第Ⅱ卷(非选择题 共90分)
二、填空题(本大题共4个小题,每小题4分,共16分)
13.-8的立方根是 .
14.如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是 .
15.一次函数和的图像如图所示,其交点为P(-2,-5),则不等式的解集是 .
16.如图,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边做正方形OB1B2C2,再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3,以此类推......则正方形OB2016B2017C2017的顶点C2017坐标是为 .
三、解答题(本大题共8题,满分74分)
17.(本小题满分8分)计算
(1) (2)
18.(本小题满分8分)
(1)解不等式组,并求出它的整数解;
(2)已知关于x,y的二元一次方程组的解互为相反数,求k的值。
19.(本小题满分8分)
阅读理解,补全证明过程及推理依据。
已知:如图,点E在直线DF上,点B在直线AC上,∠1=∠2,∠3=∠4.
求证∠A=∠F
证明:∵∠1=∠2(已知)
∠2=∠DGF( )
∴∠1=∠DGF(等量代换)
∴ ‖ ( )
∴∠3+∠ =180°( )
又∵∠3=∠4(已知)
∴∠4+∠C=180°(等量代换)
∴ ‖ ( )
∴∠A=∠F( )
20.(本小题满分8分)
某校260名学生参加植树活动,要求每人植4 ~7棵,活动结束后随机抽查了若干名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵,将各类的人数绘制成扇形图(如图1)和条形图(如图2).
回答下列问题:
(1)在这次调查中D类型有多少名学生?
(2)写出被调查学生每人植树量的众数、中位数;
(3)求被调查学生每人植树量的平均数,并估计这260名学生共植树多少棵?
- (本小题满分9分)
某农场去年生产大豆和小麦共200吨。采用新技术后,今年总产量为225吨,与去年相比较,大豆超产5%,小麦超产15%。求该农场今年实际生产大豆和小麦各多少吨?
22.(本小题满分10分)
春节期间,小明一家乘坐飞机前往某市旅游,计划第二天租出租车自驾游。
公司 | 租车收费方式 |
甲 | 每日固定租金80元,另外每小时收费15元。 |
乙 | 无固定租金,直接以租车时间计费,每小时租费30元。 |
(1)设租车时间为x小时(),租用甲公司的车所需费用为y1元,租用乙公司的车所需费用为y2元,分别求出y1、y2与x间的关系式;
(2)请你帮助小明计算并选择哪个公司租车合算。
23.(本小题满分10分)
探究与发现:如图1所示的图形,像我们常见的学习用品--圆规.我们不妨把这样图形叫做“规形图”,
(1)观察“规形图”,试探究∠BDC与∠A、∠B、∠C之间的关系,并说明理由;
(2)请你直接利用以上结论,解决以下三个问题:
①如图2,把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、XZ恰好经过点B、C,∠A=40°,则∠ABX+∠ACX= °;
②如图3,DC平分∠ADB,EC平分∠AEB,若∠DAE=40°,∠DBE=130°,求∠DCE的度数;
③如图4,∠ABD,∠ACD的10等分线相交于点G1、G2…、G9,若∠BDC=133°,∠BG1C=70°,求∠A的度数.
24.(本小题满分12分)
如图,直线AB与坐标轴交与点A(0,6),B(8,0),动点P沿路线O→B→A运动。
(1)求直线AB的表达式;
(2)当点P在OB上,使得AP平分∠OAB时,求此时点P的坐标;
(3)当点P在AB上,把线段AB分成1:3的两部分时,求此时点P的坐标。
参考答案
1-5 ACBDC
6-10 BCBCA
11-12 AB
- -2
- 25
- (1)(2)
- (1)3,4 (2)k=1
19.∵∠1=∠2(已知)
∠2=∠DGF( 对顶角相等 )
∴∠1=∠DGF(等量代换)
∴ BD ‖ CE ( 同位角相等两直线平行 )
∴∠3+∠ C =180°( 两直线平行,同旁内角互补 )
又∵∠3=∠4(已知)
∴∠4+∠C=180°(等量代换)
∴ DF ‖ AC ( 同旁内角互补两直线平行 )
∴∠A=∠F( 两直线平行内错角相等 )
- (1)2
(2)5;5(3)5.3;1378
21.
22.(1);
(2)y2-y1=15x-80 当x=时,y2=y1
当x>,甲合算,当x<,乙合算。
23.解:(1)如图(1),连接AD并延长至点F,
,
根据外角的性质,可得
∠BDF=∠BAD+∠B,∠CDF=∠C+∠CAD,
又∵∠BDC=∠BDF+∠CDF,∠BAC=∠BAD+∠CAD,
∴∠BDC=∠A+∠B+∠C;
(2)①由(1),可得
∠ABX+∠ACX+∠A=∠BXC,
∵∠A=40°,∠BXC=90°,
∴∠ABX+∠ACX=90°-40°=50°,
故答案为:50.
②由(1),可得
∠DBE=∠DAE+∠ADB+∠AEB,
∴∠ADB+∠AEB=∠DBE-∠DAE=130°-40°=90°,
∴(∠ADB+∠AEB)=90°÷2=45°,
∴∠DCE=(∠ADB+∠AEB)+∠DAE
=45°+40°
=85°;
③∠BG1C=(∠ABD+∠ACD)+∠A,
∵∠BG1C=70°,
∴设∠A为x°,
∵∠ABD+∠ACD=133°-x°
∴(133-x)+x=70,
∴13.3-x+x=70,
解得x=63,
即∠A的度数为63°.
解析
(1)首先连接AD并延长至点F,然后根据外角的性质,即可判断出∠BDC=∠A+∠B+∠C.
(2)①由(1)可得∠ABX+∠ACX+∠A=∠BXC,然后根据∠A=40°,∠BXC=90°,求出∠ABX+∠ACX的值是多少即可.
②由(1)可得∠DBE=∠DAE+∠ADB+∠AEB,再根据∠DAE=40°,∠DBE=130°,求出∠ADB+∠AEB的值是多少;然后根据∠DCE=(∠ADB+∠AEB)+∠DAE,求出∠DCE的度数是多少即可.
③根据∠BG1C=(∠ABD+∠ACD)+∠A,∠BG1C=70°,设∠A为x°,可得∠ABD+∠ACD=133°-x°,解方程,求出x的值,即可判断出∠A的度数是多少.
24.解:
(1);(2)(3,0);(3)P1(),P2()