2021届高考物理沪科版一轮复习教学案:第三章核心素养提升
展开一、“光滑斜面”模型——“科学思维”之“模型构建”
1.模型特点:如图1所示,质量为m的物体从倾角为θ、高度为h的光滑固定斜面顶端由静止下滑,则有如下规律:
图1
(1)物体从斜面顶端滑到底端所用的时间t,由斜面的倾角θ与斜面的高度h共同决定,与物体的质量无关。
关系式为t= 。
(2)物体滑到斜面底端时的速度大小只由斜面的高度h决定,与斜面的倾角θ、斜面的长度、物体的质量无关。
关系式为v=。
2.应用类型
(1)“等高斜面”模型,如图2甲所示。
图2
(2)“同底斜面”模型,如图乙所示。
(3)“等时圆”模型,如图丙、丁、戊所示。物体沿着位于同一竖直圆上的所有光滑弦从顶端由静止下滑,到达圆周上各点所用时间相等,且t=或t=,即时间与θ无关。
1.如图3所示,一物体分别从高度相同、倾角不同的三个光滑斜面顶端由静止开始下滑。下列说法正确的是( )
图3
A.滑到底端时的速度相同
B.滑到底端所用的时间相同
C.在倾角为30°的斜面上滑行的时间最短
D.在倾角为60°的斜面上滑行的时间最短
解析 关系式v=可知物体从高度相同的斜面滑到底端时的速度大小相同,但方向不同,选项A错误;由关系式t= 可知物体在倾角θ=60°的斜面上滑行时间最短,选项D正确。
答案 D
2.一间新房即将建成,现要封顶,若要求下雨时落至房顶的雨滴能最快地淌离房顶(假设雨滴沿房顶下淌时做无初速度、无摩擦的运动),则必须要设计好房顶的高度,下列四种情况中最符合要求的是( )
解析 如图,设房顶宽为2b,高度为h,斜面倾角为θ。
由图中几何关系有h=btan θ
由运动学关系可得t=
联立解得t=,可见,当θ=45°时,t最小,选项C正确。
答案 C
3.(2019·合肥质检)如图4所示,有一半圆,其直径水平且与另一圆的底部相切于O点,O点恰好是下半圆的圆心,它们处在同一竖直平面内。现有三条光滑轨道AOB、COD、EOF,它们的两端分别位于上下两圆的圆周上,轨道与竖直直径的夹角关系为α>β>θ,现让一小物块先后从三条轨道顶端由静止下滑至底端,则小物块在每一条倾斜轨道上滑动时所经历的时间关系为( )
图4
A.tAB=tCD=tEF B.tAB>tCD>tEF
C.tAB<tCD<tEF D.tAB=tCD<tEF
解析 如图所示,过D点作OD的垂线与竖直虚线交于G,以OG为直径作圆,可以看出F点在辅助圆内,而B点在辅助圆外,由等时圆结论可知,tAB>tCD>tEF,选项B正确。
答案 B
二、连接体中的分配原则——“科学思维”之“科学推理”
如图5所示,一起做加速运动的物体系统
图5
(1)若外力F作用于m1上,则m1和m2的相互作用力F12=;
(2)若作用于m2上,则F12=;
(3)此“协议”与有无摩擦无关(若有摩擦,两物体与接触面间的动摩擦因数必须相同),与两物体间有无连接物、何种连接物(轻绳、轻杆、轻弹簧)无关,而且物体系统处于平面、斜面、竖直方向此“协议”都成立。
1.(多选)如图6所示,在水平光滑桌面上放有m1和m2两个小物块,它们中间有细线连接。已知m1=3 kg,m2=2 kg,连接它们的细线最大能承受6 N的拉力。现用水平外力F1向左拉m1或用水平外力F2向右拉m2,为保持细线不断,则( )
图6
A.F1的最大值为10 N B.F1的最大值为15 N
C.F2的最大值为10 N D.F2的最大值为15 N
解析 若向左拉m1,对m2分析,则Tm=m2a,得出最大加速度a=3 m/s2;对两物块系统:F1=(m1+m2)a=(2+3)×3 N=15 N,选项B正确,A错误;若向右拉m2,对m1分析,则Tm=m1a′,得出最大加速度a′=2 m/s2;对两物块系统:F2=(m1+m2)a′=(2+3)×2 N=10 N,选项D错误,C正确。
答案 BC
2.(多选)(2017·海南物理,9)如图7所示,水平地面上有三个靠在一起的物块P、Q和R,质量分别为m、2m和3m,物块与地面间的动摩擦因数都为μ。用大小为F的水平外力推动物块P,记R和Q之间相互作用力与Q和P之间相互作用力大小之比为k。下列判断正确的是( )
图7
A.若μ≠0,则k= B.若μ≠0,则k=
C.若μ=0,则k= D.若μ=0,则k=
解析 三物块靠在一起,将以相同加速度向右运动,则加速度a=,R和Q之间相互作用力F1=3ma+3μmg=F,Q与P之间相互作用力F2=F-μmg-ma
=F-F=F,可得k==,k与μ是否为零无关,选项B、D正确。
答案 BD
3.(多选)如图8所示,质量分别为mA、mB的A、B两物块用轻线连接,放在倾角为θ的斜面上,用始终平行于斜面向上的拉力F拉A,使它们沿斜面匀加速上升,A、B与斜面间的动摩擦因数均为μ。为了增加轻线上的张力,可行的办法是( )
图8
A.减小A物块的质量 B.增大B物块的质量
C.增大倾角θ D.增大动摩擦因数μ
解析 对A、B组成的系统应用牛顿第二定律得F-(mA+mB)gsin θ-μ(mA+mB)gcos θ=(mA+mB)a,隔离物块B,应用牛顿第二定律得FT-mBgsin θ-μmBgcos θ=mBa。以上两式联立可解得FT=,由此可知,FT的大小与θ、μ无关,mB越大,FT越大,mA越小,FT越大,故选项A、B均正确。
答案 AB