2021高三数学北师大版(文)一轮教师用书:第11章第1节 随机事件的概率
展开全国卷五年考情图解 | 高考命题规律把握 |
1.考查形式 高考在本章内容中一般命制1道小题,1道解答题,分值在5~17分. 2.考查内容 高考中小题重点考查古典概型、几何概型,解答题重点考查概率的意义、古典概型及概率与统计相结合的综合性问题. 3.备考策略 (1)熟练掌握解决以下问题的方法和规律 ①互斥、对立事件的概念及概率计算问题; ②古典概型、几何概型的概率计算问题; ③概率与统计相结合的综合性问题. (2)重视分类讨论、转化与化归思想的应用. |
第一节 随机事件的概率
[最新考纲] 1.了解随机事件发生的不确定性和频率的稳定性,了解概率的意义及频率与概率的区别.2.了解两个互斥事件的概率加法公式.
(对应学生用书第188页)
1.概率
(1)定义:在相同的条件下,大量重复进行同一试验时,随机事件A发生的频率会在某个常数附近摆动,即随机事件A发生的频率具有稳定性.这时这个常数叫作随机事件A的概率,记作P(A),有0≤P(A)≤1.
(2)频率反映了一个随机事件出现的频繁程度,但频率是随机的,而概率是一个确定的值,因此,人们用概率来反映随机事件发生的可能性的大小,有时也用频率作为随机事件概率的估计值.
2.互斥事件与对立事件
(1)互斥事件:在一个随机试验中,我们把一次试验下不能同时发生的两个事件A与B称作互斥事件.
(2)对立事件:在每一次试验中,两个事件不会同时发生,并且一定有一个发生的事件A和称为对立事件.
3.概率的几个基本性质
(1)概率的取值范围:0≤P(A)≤1.
(2)必然事件的概率:P(A)=1.
(3)不可能事件的概率:P(A)=0.
(4)互斥事件的概率加法公式:
①P(A+B)=P(A)+P(B)(A,B互斥).
②P(A1+A2+…+An)=P(A1)+P(A2)+…+P(An)(A1,A2,…,An彼此互斥).
(5)对立事件的概率:P()=1-P(A).
1.辨析两组概念
(1)频率与概率
①频率是一个变量,随着试验次数的改变而改变;
②概率是一个确定的常数,是客观存在的,与每次试验无关;
③频率是概率的近似值,随着试验次数的增加,频率会越来越接近概率.
(2)互斥事件与对立事件
①两个事件是互斥事件,它们未必是对立事件;
②两个事件是对立事件,它们也一定是互斥事件.
2.概率加法公式的推广
当一个事件包含多个结果且各个结果彼此互斥时,要用到概率加法公式的推广,即P(A1+A2+…+An)=P(A1)+P(A2)+…+P(An).
一、思考辨析(正确的打“√”,错误的打“×”)
(1)“方程x2+2x+8=0有两个实根”是不可能事件. ( )
(2)对立事件一定是互斥事件,互斥事件也一定是对立事件. ( )
(3)事件发生的频率与概率是相同的. ( )
(4)若事件A发生的概率为P(A),则0<P(A)<1. ( )
[答案](1)√ (2)× (3)× (4)×
二、教材改编
1.一个人打靶时连续射击两次,事件“至少有一次中靶”的对立事件是( )
A.至多有一次中靶 B.两次都中靶
C.只有一次中靶 D.两次都不中靶
D [“至少有一次中靶”的对立事件是“两次都不中靶”.]
2.有一个容量为66的样本,数据的分组及各组的频数如下:[11.5,15.5),2;[15.5,19.5),4;[19.5,23.5),9;[23.5,27.5),18;[27.5,31.5),11;[31.5,35.5),12;[35.5,39.5),7;[39.5,43.5],3.
根据样本的频率分布估计,数据落在[27.5,43.5]内的概率约是________.
[由条件可知,落在[27.5,43.5]内的数据有11+12+7+3=33(个),故所求概率约是=.]
3.一副混合后的扑克牌(52张)中,随机抽取1张,事件A为“抽得红桃K”,事件B为“抽得黑桃”,则概率P(A+B)=________.(结果用最简分数表示)
[P(A)=,P(B)=,则P(A+B)=P(A)+P(B)=+=.]
4.甲、乙二人下棋,甲不输的概率为0.8,则乙获胜的概率为________.
0.2 [事件“乙获胜”的对立事件是“甲不输”,根据对立事件的概率计算公式可得,乙获胜的概率为:1-0.8=0.2.]
(对应学生用书第189页)
⊙考点1 随机事件之间的关系
判断互斥、对立事件的两种方法
(1)定义法:判断互斥事件、对立事件一般用定义判断,不可能同时发生的两个事件为互斥事件;两个事件,若有且仅有一个发生,则这两事件为对立事件,对立事件一定是互斥事件.对立事件是互斥事件的充分不必要条件.
(2)集合法:①由各个事件所含的结果组成的集合彼此的交集为空集,则事件互斥.
②事件A的对立事件所含的结果组成的集合,是全集中由事件A所含的结果组成的集合的补集.
1.把红、蓝、黑、白4张纸牌随机分给甲、乙、丙、丁4个人,每人分得一张,事件“甲分得红牌”与“乙分得红牌”是( )
A.对立事件 B.互斥但不对立事件
C.不可能事件 D.以上都不对
B [事件“甲分得红牌”与“乙分得红牌”不会同时发生,两者是互斥事件,但仍然有可能甲、乙均不能分得红牌,所以二者不是对立事件,故选B.]
2.把语文、数学、英语三本学习书随机地分给甲、乙、丙三位同学,每人一本,则事件A:“甲分得语文书”,事件B:“乙分得数学书”,事件C:“丙分得英语书”,则下列说法正确的是( )
A.A与B是不可能事件
B.A+B+C是必然事件
C.A与B不是互斥事件
D.B与C既是互斥事件也是对立事件
C [事件A,B,C可能同时发生,也可能不同时发生,因此选项A,B,D错,C正确.]
3.在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若事件“2张全是移动卡”的概率是,那么概率是的事件是( )
A.至多有一张移动卡 B.恰有一张移动卡
C.都不是移动卡 D.至少有一张移动卡
A [至多有一张移动卡包含“一张移动卡,一张联通卡”,“2张全是联通卡”两个事件,它是“2张全是移动卡”的对立事件.]
第2题易误选B,造成错误的原因是忽视了事件A,B,C可能同时发生,也可能不同时发生.
⊙考点2 随机事件的概率与频率
1.计算简单随机事件频率或概率的解题思路
(1)计算出所求随机事件出现的频数及总事件的频数.
(2)由频率与概率的关系得所求.
2.求解以统计图表为背景的随机事件的频率或概率问题的关键点
求解该类问题的关键是由所给频率分布表、频率分布直方图或茎叶图等图表,计算出所求随机事件出现的频数,进而利用频率与概率的关系得所求.
某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:
上年度出 险次数 | 0 | 1 | 2 | 3 | 4 | ≥5 |
保费 | 0.85a | a | 1.25a | 1.5a | 1.75a | 2a |
随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:
出险 次数 | 0 | 1 | 2 | 3 | 4 | ≥5 |
频数 | 60 | 50 | 30 | 30 | 20 | 10 |
(1)记A为事件:“一续保人本年度的保费不高于基本保费”,求P(A)的估计值;
(2)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”,求P(B)的估计值;
(3)求续保人本年度平均保费的估计值.
[解](1)事件A发生当且仅当一年内出险次数小于2.由所给数据知,一年内出险次数小于2的频率为=0.55,故P(A)的估计值为0.55.
(2)事件B发生当且仅当一年内出险次数大于1且小于4.由所给数据知,一年内出险次数大于1且小于4的频率为=0.3,故P(B)的估计值为0.3.
(3)由所给数据得
保费 | 0.85a | a | 1.25a | 1.5a | 1.75a | 2a |
频率 | 0.30 | 0.25 | 0.15 | 0.15 | 0.10 | 0.05 |
调查的200名续保人的平均保费为0.85a×0.30+a×0.25+1.25a×0.15+1.5a×0.15+1.75a×0.10+2a×0.05=1.192 5a.
因此,续保人本年度平均保费的估计值为1.192 5a.
[母题探究]
1.若本例的条件不变,试求“一续保人本年度的保费不低于基本保费”的概率的估计值.
[解] 设事件“一续保人本年度的保费不低于基本保费”为E,事件E对应于出险次数大于或等于1,由本例(3)知出险次数小于1的频率为0.3,故一年内出险次数大于或等于1的频率为1-0.3=0.7,故P(E)的估计值为0.7.
2.若本例的条件不变,记F为事件:“一续保人本年度的保费等于基本保费”,求P(F)的估计值.
[解] “一续保人本年度的保费等于基本保费”的事件F发生当且仅当一年内出险次数等于1,其频率为0.25,故P(F)的估计值为0.25.
本例第(1)(2)两问,考查了用频率估计概率,第(3)问解题的关键是列出保费与频率的关系,再根据公式求平均保费.
[教师备选例题]
某花店每天以每朵5元的价格从农场购进若干朵玫瑰花,然后以每朵10元的价格出售.如果当天卖不完,剩下的玫瑰花做垃圾处理.
(1)若花店一天购进17朵玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:朵,n∈N)的函数解析式;
(2)花店记录了100天玫瑰花的日需求量(单位:朵),整理得下表:
日需求量n | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
频数 | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
①假设花店在这100天内每天购进17朵玫瑰花,求这100天的日利润(单位:元)的平均数;
②若花店一天购进17朵玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.
[解](1)当日需求量n≥17时,利润y=85;当日需求量n<17时,利润y=10n-85.
所以利润y关于当天需求量n的函数解析式为y=(n∈N*).
(2)①这100天的日利润的平均数为
=76.4(元).
②当天的利润不少于75元,当且仅当日需求量不少于16朵,故当天的利润不少于75元的概率为P=0.16+0.16+0.15+0.13+0.1=0.7.
(2017·全国卷Ⅲ)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:
最高气温 | [10,15) | [15,20) | [20,25) | [25,30) | [30,35) | [35,40) |
天数 | 2 | 16 | 36 | 25 | 7 | 4 |
以最高气温位于各区间的频率估计最高气温位于该区间的概率.
(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;
(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.
[解](1)这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25,由表格数据知,最高气温低于25的频率为=0.6,所以这种酸奶一天的需求量不超过300瓶的概率的估计值为0.6.
(2)当这种酸奶一天的进货量为450瓶时,
若最高气温不低于25,则Y=6×450-4×450=900;
若最高气温位于区间[20,25),则Y=6×300+2(450-300)-4×450=300;
若最高气温低于20,则Y=6×200+2(450-200)-4×450=-100,
所以,Y的所有可能值为900,300,-100.
Y大于零当且仅当最高气温不低于20,由表格数据知,最高气温不低于20的频率为=0.8,因此Y大于零的概率的估计值为0.8.
⊙考点3 互斥事件、对立事件的概率
求复杂的互斥事件的概率的方法
(1)直接法
(2)间接法(正难则反)
某商场有奖销售中,购满100元商品得1张奖券,多购多得.1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A,B,C,求:
(1)P(A),P(B),P(C);
(2)1张奖券的中奖概率;
(3)1张奖券不中特等奖且不中一等奖的概率.
[解](1)P(A)=,
P(B)==,
P(C)==.
故事件A,B,C的概率分别为,,.
(2)1张奖券中奖包含中特等奖、一等奖、二等奖.设“1张奖券中奖”这个事件为M,则M=A∪B∪C.
∵A,B,C两两互斥,
∴P(M)=P(A∪B∪C)=P(A)+P(B)+P(C)
==,
故1张奖券的中奖概率约为.
(3)设“1张奖券不中特等奖且不中一等奖”为事件N,则事件N与“1张奖券中特等奖或中一等奖”为对立事件,
∴P(N)=1-P(A+B)=1-=,
故1张奖券不中特等奖且不中一等奖的概率为.
求概率时,若直接求解较复杂,可考虑先求其对立事件的概率.
1.从一箱产品中随机地抽取一件,设事件A={抽到一等品},事件B={抽到二等品},事件C={抽到三等品},且已知P(A)=0.65,P(B)=0.2,P(C)=0.1,则事件“抽到的产品不是一等品”的概率为( )
A.0.3 B.0.65 C.0.35 D.0.5
C [事件“抽到的产品不是一等品”与事件A是对立事件,因此所求概率P=1-P(A)=1-0.65=0.35,故选C.]
2.某城市2019年的空气质量状况如表所示:
污染指数T | 30 | 60 | 100 | 110 | 130 | 140 |
概率P |
其中污染指数T≤50时,空气质量为优;50<T≤100时,空气质量为良;100<T≤150时,空气质量为轻微污染,则该城市2019年空气质量达到良或优的概率为________.
[设“空气质量为优”为事件A,“空气质量为良”为事件B,“空气质量为良或优”为事件C,则P(A)=,P(B)=+=,则P(C)=P(A+B)=+=.]