终身会员
搜索
    上传资料 赚现金

    2021高三数学北师大版(理)一轮教师用书:第4章第7节正弦定理、余弦定理的综合应用

    立即下载
    加入资料篮
    2021高三数学北师大版(理)一轮教师用书:第4章第7节正弦定理、余弦定理的综合应用第1页
    2021高三数学北师大版(理)一轮教师用书:第4章第7节正弦定理、余弦定理的综合应用第2页
    2021高三数学北师大版(理)一轮教师用书:第4章第7节正弦定理、余弦定理的综合应用第3页
    还剩8页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021高三数学北师大版(理)一轮教师用书:第4章第7节正弦定理、余弦定理的综合应用

    展开

    第七节 正弦定理、余弦定理的综合应用

    [最新考纲] 能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.

    1仰角和俯角

    与目标线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方叫仰角,目标视线在水平视线下方叫俯角(如图)

            图

    2方向角

    相对于某正方向的水平角,如南偏东30°,北偏西45°等.

    3方位角

    指从正北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图)

    4坡度(又称坡比)

    坡面的垂直高度与水平长度之比.

    一、思考辨析(正确的打“√”,错误的打“×”)

    (1)A处望B处的仰角为α,从B处望A处的俯角为β,则αβ的关系为αβ180°.(  )

    (2)俯角是铅垂线与视线所成的角,其范围为.(  )

    (3)方位角与方向角其实质是一样的,均是确定观察点与目标点之间的位置关系.(  )

    (4)方位角大小的范围是[0,2π),方向角大小的范围一般是.(  )

    [答案] (1)× (2)× (3) (4)

    二、教材改编

    1.如图所示,设AB两点在河的两岸,一测量者在A所在的同侧河岸边选定一点C,测出AC的距离为50 mACB45°CAB105°后,就可以计算出AB两点的距离为________m.

    50 [由正弦定理得

    B30°AB50(m)]

    2.如图,在山脚A测得山顶P的仰角为30°,沿倾斜角为15°的斜坡向上走a米到B,在B处测得山顶P的仰角为60°,则山高h________米.

    a [由题图可得PAQα30°

    BAQβ15°PAB中,PABαβ15°

    PBCγ60°

    ∴∠BPA(90°α)(90°γ)γα30°

    PBa

    PQPCCQPB·sin γasin β

    a×sin 60°asin 15°a.]

    3.如图所示,DCB三点在地面的同一条直线上,DCa,从CD两点测得A点的仰角分别为60°30°,则A点离地面的高度AB________.

    a [由已知得DAC30°ADC为等腰三角形,ACa,所以在RtACB中,ABAC·sinACBa.]

    考点1 解三角形中的实际问题

     利用正、余弦定理解决实际问题的一般步骤

    (1)分析——理解题意,分清已知与未知,画出示意图.

    (2)建模——根据已知条件与求解目标,把已知量与求解量尽量集中在相关的三角形中,建立一个解斜三角形的数学模型.

    (3)求解——利用正弦定理或余弦定理有序地解三角形,求得数学模型的解.

    (4)检验——检验上述所求的解是否符合实际意义,从而得出实际问题的解.

     (1)江岸边有一炮台高30 m,江中有两条船,船与炮台底部在同一水平面上,由炮台顶部测得俯角分别为45°60°,而且两条船与炮台底部连线成30°角,则两条船相距________m.

    (2)如图,高山上原有一条笔直的山路BC,现在又新架设了一条索道AC,小李在山脚 B处看索道AC,发现张角ABC120°;从B处攀登400到达D处,回头看索道AC,发现张角ADC150°;从D处再攀登800可到达C处,则索道AC的长为________米.

    (1)10 (2)400 [(1)如图,OMAOtan 45°30(m)

    ONAOtan 30°×30

    10(m)

    MON中,由余弦定理得,

    MN

    10(m)

    (2)ABD中,BD400ABD120°.

    因为ADC150°

    所以ADB30°.

    所以DAB180°120°30°30°.

    由正弦定理,可得

    所以

    AD400()

    ADC中,DC800ADC150°,由余弦定理得AC2AD2CD2AD·CD·cosADC(400)280022×400×800×cos 150°4002×13

    解得AC400()

    故索道AC的长为400]

     (1)实际测量中的常见问题

    AB

    图形

    需要测量的元素

    解法

    求竖直高度

    底部可达

    ACBα

    BCa

    解直角三角形

    ABatan α

    底部不可达

    ACBαADBβ

    CDa

    解两个直角三角形

    AB

    求水平距离

    山两侧

    ACBα

    ACb

    BCa

    用余弦定理

    AB

    河两岸

    ACBα

    ABCβ

    CBa

    用正弦定理

    AB

    求水平距离

    河对岸

    ADCα

    BDCβ

    BCDδ

    ACDγ

    CDa

    ADC中,

    AC

    BDC中,

    BC

    ABC中,应用

    余弦定理求AB

    (2)三角应用题求解的关键是正确作图(平面图、立体图),并且条件对应好(仰角、俯角、方向角等)

     1.一船以每小时15 km的速度向东航行,船在A处看到一个灯塔B在北偏东60°的方向上,行驶4 h后,船到达C处,看到这个灯塔在北偏东15°的方向上,这时船与灯塔的距离为________km.

    30 [如图,由题意知,BAC30°ACB105°

    B45°AC60

    由正弦定理得

    BC30(km)]

    2.如图所示,位于A处的信息中心获悉:在其正东方向相距40海里B处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°、相距20海里C处的乙船,现乙船朝北偏东θ的方向沿直线CB前往B处救援,则cos θ的值为________

     [ABC中,AB40AC20BAC120°

    由余弦定理得

    BC2AB2AC22AB·AC·cos 120°2 800

    BC20.

    由正弦定理,得

    sinACB·sinBAC.

    BAC120°,知ACB为锐角,

    cosACB.

    θACB30°,得cos θcos(ACB30°)

    cosACBcos 30°sinACBsin 30°.]

    考点2 平面几何中的解三角形问题

     与平面图形有关的解三角形问题的关键及思路

    求解平面图形中的计算问题,关键是梳理条件和所求问题的类型,然后将数据化归到三角形中,利用正弦定理或余弦定理建立已知和所求的关系.

    具体解题思路如下:

    (1)把所提供的平面图形拆分成若干个三角形,然后在各个三角形内利用正弦、余弦定理求解;

    (2)寻找各个三角形之间的联系,交叉使用公共条件,求出结果.

     如图,在平面四边形ABCD中,ABCABADAB1.

    (1)AC,求ABC的面积;

    (2)ADCCD4,求sinCAD.

    [] (1)ABC中,由余弦定理得,AC2AB2BC22AB·BC·cosABC

    51BC2BC,解得BC

    所以ABC的面积SABCAB·BC·sinABC×1××.

    (2)CADθ,在ACD中,由正弦定理得,即  

    ABC中,BACθBCAπθ

    由正弦定理得

      

    ①②两式相除,得

    4sin θ,整理得sin θ2cos θ.

    又因为sin2θcos2θ1

    所以sin θ,即sinCAD.

     做题过程中,要用到平面几何中的一些知识点,如相似三角形的边角关系、平行四边形的一些性质,要把这些性质与正弦、余弦定理有机结合,才能顺利解决问题.

      (2019·湖南衡阳第三次联考)如图,在平面四边形ABCD中,0DABAD2AB3ABD的面积为ABBC.

    (1)sinABD的值;

    (2)BCD,求BC的长.

    [] (1)因为ABD的面积SAD×ABsinDAB×2×3sinDAB

    所以sinDAB.

    0DAB

    所以DAB

    所以cosDABcos .

    由余弦定理得

    BD

    由正弦定理得sinABD.

    (2)因为ABBC,所以ABC

    sinDBCsincosABD.

    BCD中,由正弦定理可得CD.

    由余弦定理DC2BC22DC·BCcosDCBBD2

    可得3BC24BC50

    解得BCBC=-(舍去)

    BC的长为.

    考点3 与三角形有关的最值(范围)问题

     解三角形问题中,求解某个量(式子)的最值(范围)的基本思路为:

    要建立所求量(式子)与已知角或边的关系,然后把角或边作为自变量,所求量(式子)的值作为函数值,转化为函数关系,将原问题转化为求函数的值域问题.这里要利用条件中的范围限制,以及三角形自身范围限制,要尽量把角或边的范围(也就是函数的定义域)找完善,避免结果的范围过大.

     (2019·全国卷)ABC的内角ABC的对边分别为

    abc.已知asinbsin A.

    (1)B

    (2)ABC为锐角三角形,且c1,求ABC面积的取值范围.

    [] (1)由题设及正弦定理得sin Asin

    sin Bsin A.

    因为sin A0,所以sinsin B.

    ABC180°,可得sincos,故cos2sincos.

    因为cos0

    sin,因此B60°.

    (2)由题设及(1)ABC的面积SABCa.

    由正弦定理得a.

    由于ABC为锐角三角形,故0°<A<90°0°<C<90°.(1)AC120°,所以30°C<90°,故a2,从而SABC.

    因此,ABC面积的取值范围是.

     求解三角形中的最值、范围问题的2个注意点

    (1)涉及求范围的问题,一定要搞清已知变量的范围,利用已知的范围进行求解,已知边的范围求角的范围时可以利用余弦定理进行转化.

    (2)注意题目中的隐含条件,如本例中锐角三角形的条件,又如ABCπ0Aπbcabc,三角形中大边对大角等.

    [教师备选例题]

    ABC的内角ABC的对边分别为abcabtan A,且B为钝角.

    (1)证明:BA

    (2)sin Asin C的取值范围.

    [] (1)证明:abtan A及正弦定理,

    所以sin Bcos A,即sinBsin .

    因为B为钝角,所以A为锐角,

    所以A

    BA,即BA.

    (2)(1)知,Cπ(AB)π2A0,所以A.

    于是sin Asin Csin Asin

    sin Acos 2A=-2sin2Asin A1

    =-22.

    因为0A,所以0sin A

    因此<-22.

    由此可知sin Asin C的取值范围是.

     1.在钝角ABC中 ,角ABC所对的边分别为abcB为钝角,若acos Absin A,则sin Asin C的最大值为

    (  )

    A.    B.   

    C.1    D.

    B [acos Absin A,由正弦定理可得,sin Acos Asin Bsin Asin A0cos Asin B,又B为钝角,BAsin Asin Csin Asin(AB)sin Acos 2Asin A12sin2A=-22

    sin Asin C的最大值为.]

    2.在ABC中,bB60°

    (1)ABC周长l的范围;

    (2)ABC面积最大值.

    [] (1)lac

    b23a2c22accos 60°a2c2ac

    (ac)23ac3

    (ac)233ac3×2

    ac2

    当仅仅当ac时,取

    ac2l3.

    (2)b23a2c2ac2acac

    ac3

    当且仅当ac时,取

    SABCacsin B×3×sin 60°

    ∴△ABC面积最大值为.

     

     

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2021高三数学北师大版(理)一轮教师用书:第4章第7节正弦定理、余弦定理的综合应用
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map