2021版新高考数学一轮教师用书:第10章第4节 古典概型
展开第四节 古典概型
[考点要求] 1.理解古典概型及其概率计算公式.2.会计算一些随机事件所包含的基本事件数及事件发生的概率.3.了解随机数的意义,能运用随机模拟的方法估计概率.4.了解几何概型的意义.
(对应学生用书第193页)
1.基本事件的特点
(1)任何两个基本事件是互斥的.
(2)任何事件(除不可能事件)都可以表示成基本事件的和.
2.古典概型的特点
—
︳
—
3.古典概型的概率计算公式:
P(A)=.
一、思考辨析(正确的打“√”,错误的打“×”)
(1)随机模拟方法是以事件发生的频率估计概率.( )
(2)从区间[1,10]内任取一个数,取到1的概率是.( )
(3)概率为0的事件一定是不可能事件.( )
(4)从市场上出售的标准为500±5 g的袋装食盐中任取一袋测其重量,属于古典概型.( )
[答案] (1)√ (2)× (3)× (4)×
二、教材改编
1.一枚硬币连掷2次,只有一次出现正面的概率为( )
A. B.
C. D.
D [一枚硬币连掷2次可能出现(正,正)、(反,反)、(正,反)、(反,正)四种情况,只有一次出现正面的情况有两种,故P==.]
2.(2019·唐山模拟)抛掷两枚质地均匀的骰子,向上的点数之差的绝对值为3的概率是( )
A. B.
C. D.
B [抛掷两枚质地均匀的骰子,向上的点数之差的绝对值为3的情况有:1,4;4,1;2,5;5,2;3,6;6,3,共6种,而抛掷两枚质地均匀的骰子的情况有36种,所以所求概率P==,故选B.]
3.袋中装有6个白球,5个黄球,4个红球,从中任取一球,则取到白球的概率为( )
A. B.
C. D.
A [从袋中任取一球,有15种取法,其中取到白球的取法有6种,则所求概率为P==.]
4.同时掷两个骰子,向上点数不相同的概率为________.
[掷两个骰子一次,向上的点数共6×6=36(种)可能的结果,其中点数相同的结果共有6种,所以点数不相同的概率P=1-=.]
(对应学生用书第193页)
考点1 简单的古典概型
计算古典概型事件的概率可分3步
(1)计算基本事件总个数n;
(2)计算事件A所包含的基本事件的个数m;
(3)代入公式求出概率P.
提醒:解题时可根据需要灵活选择列举法、列表法或树形图法.
(1)甲在微信群中发布6元“拼手气”红包一个,被乙、丙、丁三人抢完.若三人均领到整数元,且每人至少领到1元,则乙获得“手气最佳”(即乙领取的钱数不少于其他任何人)的概率是( )
A. B. C. D.
(2)(2017·全国卷Ⅱ)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( )
A. B. C. D.
(3)(2019·全国卷Ⅰ)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“--”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是( )
A. B. C. D.
(1)D (2)D (3)A [(1)用(x,y,z)表示乙、丙、丁抢到的红包分别为x元、y元、z元.
乙、丙、丁三人抢完6元钱的所有不同的可能结果有10种,分别为(1,1,4),(1,4,1),(4,1,1),(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1),(2,2,2).
乙获得“手气最佳”的所有不同的可能结果有4种,分别为(4,1,1),(3,1,2),(3,2,1),(2,2,2).
根据古典概型的概率计算公式,得乙获得“手气最佳”的概率P==.
(2)从5张卡片中随机抽取1张,放回后再随机抽取1张的情况如图:
基本事件总数为25,第一张卡片上的数大于第二张卡片上的数的事件数为10,
∴所求概率P==.故选D.
(3)由6个爻组成的重卦种数为26=64,在所有重卦中随机取一重卦,该重卦恰有3个阳爻的种数为C==20.根据古典概型的概率计算公式得,所求概率P==.故选A.]
古典概型中基本事件个数的探求方法
(1)枚举法:适合于给定的基本事件个数较少且易一一列举出的问题.
(2)树状图法:适合于较为复杂的问题,注意在确定基本事件时(x,y)可看成是有序的,如(1,2)与(2,1)不同,有时也可看成是无序的,如(1,2)与(2,1)相同.
(3)排列组合法:在求一些较复杂的基本事件个数时,可利用排列或组合的知识.
[教师备选例题]
1.设平面向量a=(m,1),b=(2,n),其中m,n∈{1,2,3,4},记“a⊥(a-b)”为事件A,则事件A发生的概率为( )
A. B. C. D.
A [有序数对(m,n)的所有可能结果为:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个.由a⊥(a-b),得m2-2m+1-n=0,即n=(m-1)2,由于m,n∈{1,2,3,4},故事件A包含的基本事件为(2,1)和(3,4),共2个,所以所求的概率P(A)==.]
2.用1,2,3,4,5组成无重复数字的五位数,若用a1,a2,a3,a4,a5分别表示五位数的万位、千位、百位、十位、个位,则出现a1<a2<a3>a4>a5特征的五位数的概率为________.
[1,2,3,4,5可组成A=120个不同的五位数,其中满足题目条件的五位数中,最大的5必须排在中间,左、右各两个数字只要选出,则排列位置就随之而定,满足条件的五位数有CC=6个,故出现a1<a2<a3>a4>a5特征的五位数的概率为=.]
1.(2019·武汉模拟)将7个相同的小球投入甲、乙、丙、丁4个不同的小盒中,每个小盒中至少有1个小球,那么甲盒中恰好有3个小球的概率为( )
A. B. C. D.
C [将7个相同的小球投入甲、乙、丙、丁4个不同的小盒中,每个小盒中至少有1个小球有C种放法,甲盒中恰好有3个小球有C种放法,结合古典概型的概率计算公式得所求概率为=.故选C.]
2.已知a∈{0,1,2},b∈{-1,1,3,5},则函数f(x)=ax2-2bx在区间(1,+∞)上为增函数的概率是( )
A. B. C. D.
A [∵a∈{0,1,2},b∈{-1,1,3,5},
∴基本事件总数n=3×4=12.
函数f(x)=ax2-2bx在区间(1,+∞)上为增函数,
①当a=0时,f(x)=-2bx,符合条件的只有(0,-1),即a=0,b=-1;
②当a≠0时,需要满足≤1,符合条件的有(1,-1),(1,1),(2,-1),(2,1),共4种.
∴函数f(x)=ax2-2bx在区间(1,+∞)上为增函数的概率是P=.]
考点2 古典概型与统计的综合
求解古典概型的交汇问题,关键是把相关的知识转化为事件,然后利用古典概型的有关知识解决,其解题流程为:
—
↓
—
↓
—
↓
—
(2019·天津高考)2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.
(1)应从老、中、青员工中分别抽取多少人?
(2)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为A,B,C,D,E,F.享受情况如下表,其中“○”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.
员工 项目 | A | B | C | D | E | F |
子女教育 | ○ | ○ | × | ○ | × | ○ |
继续教育 | × | × | ○ | × | ○ | ○ |
大病医疗 | × | × | × | ○ | × | × |
住房贷款利息 | ○ | ○ | × | × | ○ | ○ |
住房租金 | × | × | ○ | × | × | × |
赡养老人 | ○ | ○ | × | × | × | ○ |
(ⅰ)试用所给字母列举出所有可能的抽取结果;
(ⅱ)设M为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M发生的概率.
[解] (1)由已知,老、中、青员工人数之比为6∶9∶10,
由于采用分层抽样的方法从中抽取25位员工,因此应从老、中、青员工中分别抽取6人,9人,10人.
(2)(ⅰ)从已知的6人中随机抽取2人的所有可能结果为{A,B},{A,C},{A,D},{A,E},{A,F},{B,C},{B,D},{B,E},{B,F},{C,D},{C,E},{C,F},{D,E},{D,F},{E,F},共15种.
(ⅱ)由表格知,符合题意的所有可能结果为
{A,B},{A,D},{A,E},{A,F},{B,D},{B,E},{B,F},{C,E},{C,F},{D,F},{E,F},共11种.
所以,事件M发生的概率P(M)=.
有关古典概型与统计结合的题型是高考考查概率的一个重要题型,已成为高考考查的热点,概率与统计的结合题,无论是直接描述还是利用概率分布表、频率分布直方图、茎叶图等给出信息,准确从题中提炼信息是解题的关键.
1.移动公司拟在国庆期间推出4G套餐,对国庆节当日办理套餐的客户进行优惠,优惠方案如下:选择套餐1的客户可获得优惠200元,选择套餐2的客户可获得优惠500元,选择套餐3的客户可获得优惠300元.国庆节当天参与活动的人数统计结果如图所示,现将频率视为概率.
(1)求从中任选1人获得优惠金额不低于300元的概率;
(2)若采用分层抽样的方式从参加活动的客户中选出6人,再从该6人中随机选出2人,求这2人获得相等优惠金额的概率.
[解] (1)设事件A为“从中任选1 人获得优惠金额不低于300元”,则P(A)==.
(2)设事件B为“从这6人中选出2人,他们获得相等优惠金额”,由题意按分层抽样方式选出的6人中,获得优惠200元的有1人,获得优惠500元的有3人,获得优惠300元的有2人,分别记为a1,b1,b2,b3,c1,c2,从中选出2人的所有基本事件如下:a1b1,a1b2,a1b3,a1c1,a1c2,b1b2,b1b3,b1c1,b1c2,b2b3,b2c1,b2c2,b3c1,b3c2,c1c2,共15个.
其中使得事件B成立的有b1b2,b1b3,b2b3,c1c2,共4个.则P(B)=.故这2人获得相等优惠金额的概率为.
2.某县共有90个农村淘宝服务网点,随机抽取6个网点统计其元旦期间的网购金额(单位:万元)的茎叶图如图所示,其中茎为十位数,叶为个位数.
(1)根据茎叶图计算样本数据的平均数;
(2)若网购金额(单位:万元)不小于18的服务网点定义为优秀服务网点,其余为非优秀服务网点,根据茎叶图推断这90个服务网点中优秀服务网点的个数;
(3)从随机抽取的6个服务网点中再任取2个作网购商品的调查,求恰有1个网点是优秀服务网点的概率.
[解] (1)由题意知,样本数据的平均数
==12.
(2)样本中优秀服务网点有2个,概率为=,由此估计这90个服务网点中优秀服务网点有90×=30(个).
(3)样本中优秀服务网点有2个,分别记为a1,a2,非优秀服务网点有4个,分别记为b1,b2,b3,b4,从随机抽取的6个服务网点中再任取2个的可能情况有:(a1,a2),(a1,b1),(a1,b2),(a1,b3),(a1,b4),(a2,b1),(a2,b2),(a2,b3),(a2,b4),(b1,b2),(b1,b3),(b1,b4),(b2,b3),(b2,b4),(b3,b4),共15种,
记“恰有1个是优秀服务网点”为事件M,则事件M包含的可能情况有:(a1,b1),(a1,b2),(a1,b3),(a1,b4),(a2,b1),(a2,b2),(a2,b3),(a2,b4),共8种,
故所求概率P(M)=.
课外素养提升⑨ 数学建模——数学文化与概率 |
(对应学生用书第195页)
数学文化是国家文化素质教育的重要组成部分,纵观近几年高考,概率统计部分以数学文化为背景的问题,层出不穷,让人耳目一新.同时它也使考生们受困于背景陌生,阅读受阻,使思路无法打开.下面通过对典型例题的剖析,让同学们增加对数学文化的认识,进而加深对数学文化的理解,提升数学核心素养.
以古代文化经典为素材
【例1】 中国古代四大艺术,琴棋书画,源远流长,相传尧舜以棋教子,在春秋、战国时期,围棋已广为流行.围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率为,都是白子的概率是,则从中任意取出2粒恰好是同一色的概率是( )
A. B. C. D.1
C [设“从中取出2粒都是黑子”为事件A,“从中取出2粒都是白子”为事件B,“任意取出2粒恰好是同一色”为事件C,则C=A+B,且事件A与B互斥.
所以P(C)=P(A)+P(B)=+=.即任意取出2粒恰好是同一色的概率为.]
[评析] 以中国古代四大艺术为载体,渗透中国传统文化艺术,涉及世界人文知识,可将实际问题转化为数学中的古典概型问题,结合古典概型及互斥事件的概率给与解答.
【素养提升练习】 1.(2019·贵阳一模)齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中随机选一匹进行一场比赛,则田忌的马获胜的概率为( )
A. B. C. D.
A [分别用A,B,C表示齐王的上、中、下等马,用a,b,c表示田忌的上、中、下等马,现从双方的马匹中随机选一匹进行一场比赛有Aa,Ab,Ac,Ba,Bb,Bc,Ca,Cb,Cc共9场比赛,其中田忌马获胜的有Ba,Ca,Cb共3场比赛,所以田忌马获胜的概率为.]
2.五行学说是华夏民族创造的哲学思想,是华夏文明重要组成部分.古人认为,天下万物皆由金、木、水、火、土五类元素组成,如图,分别是金、木、水、火、土彼此之间存在的相生相克的关系.若从5类元素中任选2类元素,则2类元素相生的概率为( )
A. B. C. D.
A [金、木、水、火、土任取两类,共有:
金木、金水、金火、金土、木水、木火、木土、水火、水土、火土10种结果,其中两类元素相生的有火木、火土、木水、水金、金土共5结果,所以2类元素相生的概率为=,故选A.]
3.生活中人们常用“通五经贯六艺”形容一个人才识技艺过人,这里的“六艺”其实源于中国周朝的贵族教育体系,具体包括“礼、乐、射、御、书、数”.为弘扬中国传统文化,某校在周末学生业余兴趣活动中开展了“六艺”知识讲座,每艺安排一节,连排六节,则满足“数”必须排在前两节,“礼”和“乐”必须分开安排的概率为( )
A. B. C. D.
C [基本事件总数n=A=720,满足“数”必须排在前两节,“礼”和“乐”必须分开安排包含的基本事件个数:
第一节是数,有:AA=72种排法,第二节是数,有:A-CACA=84种排法,
∴m=72+84=156,
则满足“数”必须排在前两节,“礼”和“乐”必须分开安排的概率p===.故选C.]
4.(2019·宝鸡模拟)洛书,古称龟书,是阴阳五行术数之源,在古代传说中有神龟出于洛水,其甲壳上心有此图象,结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,五方白圈皆阳数,四角黑点为阴数.如图,若从四个阴数和五个阳数中随机选取3个不同的数,其和等于15的概率是( )
A. B. C. D.
A [先计算从四个阴数和五个阳数共9个数字中随机选取3个不同的数,总共有C种选法,在计算符合条件和等于15的三个数的种类,即可算出概率.
从四个阴数和五个阳数共9个数字中随机选取3个不同的数,总共有C=84种选法,其和等于15的三个数的种类共有8种,即:(图形中各横,各列,对角线所在的三个数字之和均为15).故其和等于15的概率是:=,故选A.]
以数学家为素材
【例2】 (2018·全国卷Ⅱ)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( )
A. B. C. D.
C [不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,从中随机选取两个不同的数有C种不同的取法,这10个数中两个不同的数的和等于30的有3对,所以所求概率P==,故选C.]
[评析] 以我国数学家陈景润在哥德巴赫猜想的研究中取得的成果为载体,展现了我国数学家在数学领域中的地位,可将实际问题转化为数学中的古典概型问题,结合古典概型解答.
【素养提升练习】 1.我国数学家邹元治利用如图证明了勾股定理,该图中用勾(a)和股(b)分别表示直角三角形的两条直角边,用弦(c)来表示斜边,现已知该图中勾为3,股为4,若从图中随机取一点,则此点不落在中间小正方形中的概率是( )
A. B. C. D.
B [a=3,b=4,由题意得c=5,因为大正方形的边长为a+b=3+4=7,小正方形的边长为c=5,则大正方形的面积为49,小正方形的面积为25,所以满足题意的概率值为1-=.故选B.]
2.费马素数是法国大数学家费马命名的,形如22n+1的素数(如:220+1=3)为费马素数,在不超过30的正偶数中随机选取一数,则它能表示为两个不同费马素数的和的概率是( )
A. B. C. D.
B [在不超过30的正偶数中随机选取一数,基本事件总数n=15,能表示为两个不同费马素数的和的只有8=3+5,20=3+17,22=5+17,共有3个.
则它能表示为两个不同费马素数的和的概率是P==.]
以新时代气息为背景
【例3】 现有三张识字卡片,分别写有“中”、“国”、“梦”这三个字.将这三张卡片随机排序,则能组成“中国梦”的概率是( )
A. B. C. D.
D [把这三张卡片排序有“中国梦”,“中梦国”,“国中梦”,“国梦中”,“梦中国”,“梦国中”,共有6种,能组成“中国梦” 的只有1种,故所求概率为.]
[评析] 以“中国梦”为载体,展现了中国特色社会主义新时代的气息,将数学落实在中华传统美德,贯彻“弘扬正能量”的精神风貌中,可结合古典概型解答.
【素养提升练习】 1.2019年,河北等8省公布了高考改革综合方案将采取“3+1+2”模式,即语文、数学、英语必考,然后考生先在物理、历史中选择1门,再在思想政治、地理、化学、生物中选择2门.一名同学随机选择3门功课,则该同学选到物理、地理两门功课的概率为( )
A. B. C. D.
B [由题意可知总共情况为CC=12,满足情况为C=3,∴该同学选到物理、地理两门功课的概率为P==.故选B.]
2.(2019·甘肃天水一中模拟)为了弘扬我国优秀传统文化,某中学广播站在中国传统节日:春节,元宵节,清明节,端午节,中秋节五个节日中随机选取两个节日来讲解其文化内涵,那么春节和端午节至少有一个被选中的概率是( )
A.0.3 B.0.4 C.0.6 D.0.7
D [由题意得,从五个节日中随机选取两个节日的所有情况有C=10种,设“春节和端午节至少有一个被选中”为事件A,则事件A包含的基本事件的个数为2C+C=7.由古典概型概率公式可得P(A)===0.7.故选D.]
3.电视台组织中学生知识竞赛,共设有5个版块的试题,主题分别是“中华诗词”“社会主义核心价值观”“依法治国理念”“中国戏剧”“创新能力”.某参赛队从中任选2个主题作答,则“中华诗词”主题被该队选中的概率是________.
[由于知识竞赛有五个板块,所以共有C=10种结果,某参赛队从中任选2个主题作答,选中的结果为C=4种,则“中华诗词”主题被选中的概率为P(A)=.]