


所属成套资源:2021版高考文科数学北师大版一轮复习精品教案
2021版高考文科数学(北师大版)一轮复习教师用书:第三章 第3讲 导数与函数的极值、最值
展开
第3讲 导数与函数的极值、最值
一、知识梳理
1.函数的极值
函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0;而且在点x=a附近的左侧f′(x)0,函数f(x)在(0,+∞)上是增加的,无极小值.
当a-1>0,即a>1时,由f′(x)1时,f(x)极小值=1+ln(a-1).
利用导数研究函数极值问题的一般流程
角度三 已知函数的极值求参数值(范围)
设函数f(x)=[ax2-(3a+1)x+3a+2]ex.
(1)若曲线y=f(x)在点(2,f(2))处的切线斜率为0,求实数a的值;
(2)若f(x)在x=1处取得极小值,求实数a的取值范围.
【解】 (1)因为f(x)=[ax2-(3a+1)x+3a+2]ex,
所以f′(x)=[ax2-(a+1)x+1]ex.
f′(2)=(2a-1)e2.
由题设知f′(2)=0,即(2a-1)e2=0,解得a=.
(2)由(1)得f′(x)=[ax2-(a+1)x+1]ex=(ax-1)(x-1)ex.
若a>1,则当x∈时,f′(x)0.
所以f(x)在x=1处取得极小值.
若a≤1,则当x∈(0,1)时,ax-1≤x-10.
所以1不是f(x)的极小值点.
综上可知,a的取值范围是(1,+∞).
已知函数极值点或极值求参数的两个要领
(1)列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解.
(2)验证:因为导数值等于零不是此点为极值点的充要条件,所以利用待定系数法求解后必须验证根的合理性.
[提醒] 若函数y=f(x)在区间(a,b)内有极值,那么y=f(x)在(a,b)内绝不是单调函数,即在某区间上单调函数没有极值.
1.(2020·咸阳市诊断测试)已知函数f(x)=(x2-m)ex,若函数f(x)的图象在x=1处切线的斜率为3e,则f(x)的极大值是( )
A.4e-2 B.4e2
C.e-2 D.e2
解析:选A.f′(x)=(x2+2x-m)ex.由题意知,f′(1)=(3-m)e=3e,所以m=0,f′(x)=(x2+2x)ex.当x>0或x0,f(x)是增函数;当-2
