还剩15页未读,
继续阅读
所属成套资源:2021版高考理科数学(北师大版)一轮复习教案
成套系列资料,整套一键下载
2021版高考理科数学(北师大版)一轮复习教师用书:第九章 第3讲 圆的方程
展开
第3讲 圆的方程
一、知识梳理
1.圆的定义及方程
定义
平面内与定点的距离等于定长的点的集合(轨迹)叫做圆
标准方程
(x-a)2+(y-b)2=r2(r>0)
圆心:(a,b),半径:r
一般方程
x2+y2+Dx+Ey+F=0(D2+E2-4F>0)
圆心:,
半径:
2.点与圆的位置关系
点M(x0,y0)与圆(x-a)2+(y-b)2=r2的位置关系:
(1)若M(x0,y0)在圆外,则(x0-a)2+(y0-b)2>r2.
(2)若M(x0,y0)在圆上,则(x0-a)2+(y0-b)2=r2.
(3)若M(x0,y0)在圆内,则(x0-a)2+(y0-b)2<r2.
常用结论
几种常见圆的方程的设法
标准方程的设法
一般方程的设法
圆心在原点
x2+y2=r2
x2+y2-r2=0
续 表
标准方程的设法
一般方程的设法
过原点
(x-a)2+(y-b)2=a2+b2
x2+y2+Dx+Ey=0
圆心在x轴上
(x-a)2+y2=r2
x2+y2+Dx+F=0
圆心在y轴上
x2+(y-b)2=r2
x2+y2+Ey+F=0
与x轴相切
(x-a)2+(y-b)2=b2
x2+y2+Dx+Ey+D2=0
与y轴相切
(x-a)2+(y-b)2=a2
x2+y2+Dx+Ey+E2=0
二、教材衍化
1.以点(3,-1)为圆心,并且与直线3x+4y=0相切的圆的方程是( )
A.(x-3)2+(y+1)2=1
B.(x-3)2+(y-1)2=1
C.(x+3)2+(y-1)2=1
D.(x+3)2+(y+1)2=1
答案:A
2.圆x2+y2-4x+6y=0的圆心坐标为________,半径为________.
解析:x2+y2-4x+6y=0,得(x-2)2+(y+3)2=13.
所以圆心坐标为(2,-3),半径为.
答案:(2,-3)
3.圆C的圆心在x轴上,并且过点A(-1,1)和B(1,3),则圆C的方程为________.
解析:设圆心坐标为C(a,0),
因为点A(-1,1)和B(1,3)在圆C上,
所以|CA|=|CB|,
即=,
解得a=2,
所以圆心为C(2,0),
半径|CA|==,
所以圆C的方程为(x-2)2+y2=10.
答案:(x-2)2+y2=10
一、思考辨析
判断正误(正确的打“√”,错误的打“×”)
(1)已知点A(x1,y1),B(x2,y2),则以AB为直径的圆的方程是(x-x1)(x-x2)+(y-y1)(y-y2)=0.( )
(2)方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的充要条件是A=C≠0,B=0,D2+E2-4AF>0.( )
(3)方程x2+2ax+y2=0一定表示圆.( )
(4)(x-2)2+(y+1)2=a2(a≠0)表示以(2,1)为圆心,a为半径的圆.( )
(5)圆x2+2x+y2+y=0的圆心是.( )
(6)若点M(x0,y0)在圆x2+y2+Dx+Ey+F=0外,则x+y+Dx0+Ey0+F<0.( )
答案:(1)√ (2)√ (3)× (4)× (5)× (6)×
二、易错纠偏
(1)忽视表示圆的充要条件D2+E2-4F>0;
(2)错用点与圆的位置关系;
(3)不能正确确定圆心坐标.
1.若方程x2+y2+mx-2y+3=0表示圆,则m的取值范围是________.
解析:将x2+y2+mx-2y+3=0化为圆的标准方程得+(y-1)2=-2.
由其表示圆可得-2>0,解得m<-2或m>2.
答案:(-∞,-2)∪(2,+∞)
2.若点(1,1)在圆(x-a)2+(y+a)2=4的内部,则实数a的取值范围是________.
解析:因为点(1,1)在圆内,
所以(1-a)2+(a+1)2<4,即-1 答案:(-1,1)
3.若圆C的半径为1,圆心在第一象限,且与直线4x-3y=0和x轴都相切,则该圆的标准方程是________.
解析:由于圆心在第一象限且与x轴相切,可设圆心为(a,1)(a>0),又圆与直线4x-3y=0相切,
所以=1,解得a=2或a=-(舍去).
所以圆的标准方程为(x-2)2+(y-1)2=1.
答案:(x-2)2+(y-1)2=1
求圆的方程(多维探究)
角度一 已知不共线的三点,求圆的方程
(一题多解)已知圆E经过三点A(0,1),B(2,0),C(0,-1),且圆心在x轴的正半轴上,则圆E的标准方程为________.
【解析】 法一(待定系数法):根据题意,设圆E的圆心坐标为(a,0)(a>0),半径为r,则圆E的标准方程为(x-a)2+y2=r2(a>0).
由题意得解得
所以圆E的标准方程为+y2=.
法二(待定系数法):设圆E的一般方程为x2+y2+Dx+Ey+F=0(D2+E2-4F>0),
则由题意得解得
所以圆E的一般方程为x2+y2-x-1=0,
即+y2=.
法三(几何法):因为圆E经过点A(0,1),B(2,0),所以圆E的圆心在线段AB的垂直平分线y-=2(x-1)上.
又圆E的圆心在x轴的正半轴上,所以圆E的圆心坐标为.
则圆E的半径为EB==,
所以圆E的标准方程为+y2=.
【答案】 +y2=
角度二 已知两点及圆心所在直线,求圆的方程
(一题多解)求圆心在直线x-2y-3=0上,且过点A(2,-3),B(-2,-5)的圆的方程.
【解】 法一:设点C为圆心,因为点C在直线x-2y-3=0上,
所以可设点C的坐标为(2a+3,a).
又该圆经过A,B两点,
所以|CA|=|CB|,
即=,解得a=-2,
所以圆心C的坐标为(-1,-2),半径r=.
故所求圆的方程为(x+1)2+(y+2)2=10.
法二:设所求圆的标准方程为(x-a)2+(y-b)2=r2,
由题意得解得
故所求圆的方程为(x+1)2+(y+2)2=10.
法三:设圆的一般方程为x2+y2+Dx+Ey+F=0,则圆心坐标为.
由题意得解得
故所求圆的方程为x2+y2+2x+4y-5=0.
角度三 已知直线与圆的位置关系,求圆的方程
(1)已知圆C与直线y=x及x-y-4=0都相切,且圆心在直线y=-x上,则圆C的方程为________.
(2)圆心在直线x-2y=0上的圆C与y轴的正半轴相切,圆C截x轴所得弦的长为2,则圆C的标准方程为__________________.
【解析】 (1)x-y=0和x-y-4=0之间的距离为=2,所以圆的半径为.又因为y=-x与x-y=0,x-y-4=0均垂直,所以由y=-x和x-y=0联立得交点坐标为(0,0),由y=-x和x-y-4=0联立得交点坐标为(2,-2),所以圆心坐标为(1,-1),故圆C的方程为(x-1)2+(y+1)2=2.
(2)设圆C的圆心为(a,b)(b>0),由题意得a=2b>0,且a2=()2+b2,解得a=2,b=1.
所以所求圆的标准方程为(x-2)2+(y-1)2=4.
【答案】 (1)(x-1)2+(y+1)2=2 (2)(x-2)2+(y-1)2=4
求圆的方程的两种方法
(1)直接法
根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程.
(2)待定系数法
①若已知条件与圆心(a,b)和半径r有关,则设圆的标准方程,依据已知条件列出关于a,b,r的方程组,从而求出a,b,r的值;
②若已知条件没有明确给出圆心或半径,则选择圆的一般方程,依据已知条件列出关于D,E,F的方程组,进而求出D,E,F的值.
[提醒] 解答圆的有关问题,应注意数形结合,充分运用圆的几何性质.
1.(一题多解)(2020·陕西西安一模)已知圆C截两坐标轴所得弦长相等,且圆C过点(-1,0)和(2,3),则圆C的半径为( )
A.8 B.2
C.5 D.
解析:选D.法一:设圆的标准方程为(x-a)2+(y-b)2=r2(r>0).因为圆C经过点(-1,0)和(2,3),所以所以a+b-2=0,①
又圆C截两坐标轴所得弦长相等,所以|a|=|b|,②
由①②得a=b=1,所以圆C的半径为,故选D.
法二:因为圆C经过点M(-1,0)和N(2,3),所以圆心C在线段MN的垂直平分线y=-x+2上,又圆C截两坐标轴所得弦长相等,所以圆心C到两坐标的距离相等,所以圆心C在直线y=±x上,因为直线y=-x和直线y=-x+2平行,所以圆心C为直线y=x和直线y=-x+2的交点(1,1),所以圆C的半径为.故选D.
2.(2020·湖北“荆、襄、宜七校考试联盟”期末)已知圆C经过直线x+y+2=0与圆x2+y2=4的交点,且圆C的圆心在直线2x-y-3=0上,则圆C的方程为________.
解析:设所求圆的方程为(x2+y2-4)+a(x+y+2)=0,a≠0,即x2+y2+ax+ay-4+2a=0,
所以圆心为,因为圆心在直线2x-y-3=0,所以-a+-3=0,所以a=-6.
所以圆的方程为x2+y2-6x-6y-16=0,即(x-3)2+(y-3)2=34.
答案:(x-3)2+(y-3)2=34
与圆有关的轨迹问题(师生共研)
已知过原点O的动直线l与圆C1:x2+y2-6x+5=0相交于不同的两点A,B.
(1)求圆C1的圆心坐标;
(2)求线段AB的中点M的轨迹方程.
【解】 (1)由x2+y2-6x+5=0得(x-3)2+y2=4,
所以圆C1的圆心坐标为(3,0).
(2)设M(x,y),
因为点M为线段AB的中点,
所以C1M⊥OM,
所以kC1M·kAB=-1,当x≠3时可得·=-1,整理得+y2=,
又当直线l与x轴重合时,M点坐标为(3,0),代入上式成立.
设直线l的方程为y=kx,与x2+y2-6x+5=0联立,
消去y得:(1+k2)x2-6x+5=0.
令其判别式Δ=(-6)2-4(1+k2)×5=0,得k2=,此时方程为x2-6x+5=0,解得x=,因此
求与圆有关的轨迹方程的方法
已知圆x2+y2=4上一定点A(2,0),B(1,1)为圆内一点,P,Q为圆上的动点.
(1)求线段AP中点的轨迹方程;
(2)若∠PBQ=90°,求线段PQ中点的轨迹方程.
解:(1)设AP的中点为M(x,y),由中点坐标公式可知,P点坐标为(2x-2,2y).
因为P点在圆x2+y2=4上,
所以(2x-2)2+(2y)2=4.
故线段AP中点的轨迹方程为(x-1)2+y2=1.
(2)设PQ的中点为N(x,y),在Rt△PBQ中,|PN|=|BN|,
设O为坐标原点,连接ON(图略),则ON⊥PQ,所以|OP|2=|ON|2+|PN|2=|ON|2+|BN|2,
所以x2+y2+(x-1)2+(y-1)2=4.
故线段PQ中点的轨迹方程为x2+y2-x-y-1=0.
与圆有关的最值问题(多维探究)
角度一 利用几何性质求最值
已知实数x,y满足方程x2+y2-4x+1=0,则(1)的最大值和最小值分别为________和________;
(2)y-x的最大值和最小值分别为________和________;
(3)x2+y2的最大值和最小值分别为________和________.
【解析】 原方程可化为(x-2)2+y2=3,表示以(2,0)为圆心,为半径的圆.
(1)的几何意义是圆上一点与原点连线的斜率,所以设=k,即y=kx.当直线y=kx与圆相切时(如图),斜率k取最大值或最小值,此时=,解得k=±.所以的最大值为,最小值为-.
(2)y-x可以看作是直线y=x+b在y轴上的截距.如图所示,当直线y=x+b与圆相切时,纵截距b取得最大值或最小值,此时=,解得b=-2±,所以y-x的最大值为-2+,最小值为-2-.
(3)x2+y2表示圆上的一点与原点距离的平方.由平面几何知识知,在原点和圆心连线与圆的两个交点处取得最大值和最小值.又圆心到原点的距离为2,所以x2+y2的最大值是(2+)2=7+4,x2+y2的最小值是(2-)2=7-4.
【答案】 (1) - (2)-2+ -2- (3)7+4 7-4
借助几何性质求与圆有关的最值问题,根据代数式的几何意义,借助数形结合思想求解.
(1)形如μ=形式的最值问题,可转化为动直线斜率的最值问题或转化为线性规划问题.
(2)形如t=ax+by形式的最值问题,可转化为动直线截距的最值问题或转化为线性规划问题.
(3)形如(x-a)2+(y-b)2形式的最值问题,可转化为动点到定点的距离的平方的最值问题.
角度二 建立函数关系求最值
(2020·黄山模拟)设点P(x,y)是圆:x2+(y-3)2=1上的动点,定点A(2,0),B(-2,0),则·的最大值为________.
【解析】 由题意,知=(2-x,-y),=(-2-x,-y),所以·=x2+y2-4,由于点P(x,y)是圆上的点,故其坐标满足方程x2+(y-3)2=1,故x2=-(y-3)2+1,所以·=-(y-3)2+1+y2-4=6y-12.由圆的方程x2+(y-3)2=1,易知2≤y≤4,所以当y=4时,·的值最大,最大值为6×4-12=12.
【答案】 12
根据题中条件列出相关的函数关系式,再根据函数知识或基本不等式求最值.
1.已知点A(-1,0),B(0,2),点P是圆(x-1)2+y2=1上任意一点,则△PAB面积的最大值与最小值分别是( )
A.2,(4-) B.(4+),(4-)
C.,4- D.(+2),(-2)
解析:选B.由题意知|AB|==,
lAB:2x-y+2=0,
由题意知圆心坐标为(1,0),
所以圆心到直线lAB的距离d===.
所以S△PAB的最大值为××=(4+),
S△PAB的最小值为××=(4-).
2.已知实数x,y满足(x-2)2+(y-1)2=1,则z=的最大值与最小值分别为________和________.
解析:由题意,得表示过点A(0,-1)和圆(x-2)2+(y-1)2=1上的动点P(x,y)的直线的斜率.当且仅当直线与圆相切时,直线的斜率分别取得最大值和最小值.设切线方程为y=kx-1,即kx-y-1=0,则=1,解得k=,所以zmax=,zmin=.
答案:
3.设点P(x,y)是圆:(x-3)2+y2=4上的动点,定点A(0,2),B(0,-2),则|+|的最大值为________.
解析:由题意,知=(-x,2-y),=(-x,-2-y),所以+=(-2x,-2y),由于点P(x,y)是圆上的点,故其坐标满足方程(x-3)2+y2=4,故y2=-(x-3)2+4,所以|+|==2.由圆的方程(x-3)2+y2=4,易知1≤x≤5,所以当x=5时,|+|的值最大,最大值为2=10.
答案:10
[基础题组练]
1.圆心在y轴上,半径为1,且过点(1,2)的圆的方程是( )
A.x2+(y-2)2=1 B.x2+(y+2)2=1
C.(x-1)2+(y-3)2=1 D.x2+(y-3)2=1
解析:选A.设圆心为(0,a),则=1,
解得a=2,故圆的方程为x2+(y-2)2=1.故选A.
2.(2020·河北省九校第二次联考)圆C的半径为2,圆心在x轴的正半轴上,直线3x+4y+4=0与圆C相切,则圆C的方程为( )
A.x2+y2-2x-3=0 B.x2+y2+4x=0
C.x2+y2-4x=0 D.x2+y2+2x-3=0
解析:选C.由题意设所求圆的方程为(x-m)2+y2=4(m>0),则=2,解得m=2或m=-(舍去),故所求圆的方程为(x-2)2+y2=4,即x2+y2-4x=0.故选C.
3.方程|x|-1=所表示的曲线是( )
A.一个圆 B.两个圆
C.半个圆 D.两个半圆
解析:选D.由题意得即或
故原方程表示两个半圆.
4.(一题多解)在平面直角坐标系中,O为坐标原点,A(8,0),以OA为直径的圆与直线y=2x在第一象限的交点为B,则直线AB的方程为( )
A.x+2y-8=0 B.x-2y-8=0
C.2x+y-16=0 D.2x-y-16=0
解析:选A.法一:如图,由题意知OB⊥AB,因为直线OB的方程为y=2x,所以直线AB的斜率为-,因为A(8,0),所以直线AB的方程为y-0=-(x-8),即x+2y-8=0,故选A.
法二:依题意,以OA为直径的圆的方程为(x-4)2+y2=16,
解方程组,得或(舍去),即B,因为A(8,0),所以kAB==-,所以直线AB的方程为y-0=-(x-8),即x+2y-8=0,故选A.
5.(2020·河北五个一名校联盟一诊)已知点P为圆C:(x-1)2+(y-2)2=4上一点,A(0,-6),B(4,0),则|+|的最大值为( )
A.+2 B.+4
C.2+4 D.2+2
解析:选C.取AB的中点D(2,-3),则+=2,|+|=|2|,||的最大值为圆心C(1,2)与D(2,-3)的距离d再加半径r,又d==,所以d+r=+2.
所以|2|的最大值为2+4.故选C.
6.点M,N是圆x2+y2+kx+2y-4=0上的不同两点,且点M,N关于直线x-y+1=0对称,则该圆的半径为________.
解析:圆x2+y2+kx+2y-4=0的圆心坐标为.因为点M,N在圆x2+y2+kx+2y-4=0上,且点M,N关于直线x-y+1=0对称,所以直线x-y+1=0经过圆心,即-+1+1=0,k=4.所以圆的方程为x2+y2+4x+2y-4=0,圆的半径为×=3.
答案:3
7.已知圆C的圆心在x轴的正半轴上,点M(0,)在圆C上,且圆心到直线2x-y=0的距离为,则圆C的方程为________________.
解析:因为圆C的圆心在x轴的正半轴上,设C(a,0),且a>0,所以圆心到直线2x-y=0的距离d==,
解得a=2,所以圆C的半径r=|CM|==3,
所以圆C的方程为(x-2)2+y2=9.
答案:(x-2)2+y2=9
8.已知点P(2,2),圆C:x2+y2-8y=0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点,则点M的轨迹方程为________________.
解析:圆C的方程可化为x2+(y-4)2=16,
所以圆心为C(0,4),半径为4.
设M(x,y),则=(x,y-4),=(2-x,2-y).
由题设知·=0,故x(2-x)+(y-4)(2-y)=0.
即(x-1)2+(y-3)2=2.
由于点P在圆C的内部,所以点M的轨迹方程是(x-1)2+(y-3)2=2.
答案:(x-1)2+(y-3)2=2
9.(一题多解)一个圆与y轴相切,圆心在直线x-3y=0上,且在直线y=x上截得的弦长为2,则该圆的方程为________.
解析:法一:因为所求圆的圆心在直线x-3y=0上,
所以设所求圆的圆心为(3a,a),
又所求圆与y轴相切,
所以半径r=3|a|,
又所求圆在直线y=x上截得的弦长为2,圆心(3a,a)到直线y=x的距离d=,
所以d2+()2=r2,
即2a2+7=9a2,所以a=±1.
故所求圆的方程为(x-3)2+(y-1)2=9或(x+3)2+(y+1)2=9,即x2+y2-6x-2y+1=0或x2+y2+6x+2y+1=0.
法二:设所求圆的方程为(x-a)2+(y-b)2=r2,
则圆心(a,b)到直线y=x的距离为,
所以r2=+7,即2r2=(a-b)2+14. ①
由于所求圆与y轴相切,所以r2=a2, ②
又因为所求圆的圆心在直线x-3y=0上,
所以a-3b=0, ③
联立①②③,解得或
故所求圆的方程为(x-3)2+(y-1)2=9或(x+3)2+(y+1)2=9,即x2+y2-6x-2y+1=0或x2+y2+6x+2y+1=0.
法三:设所求圆的方程为x2+y2+Dx+Ey+F=0,则圆心的坐标为,
半径r=.
在圆的方程中,令x=0,得y2+Ey+F=0.
由于所求圆与y轴相切,
所以Δ=0,则E2=4F. ①
圆心到直线y=x的距离为d=,
由已知得d2+()2=r2,
即(D-E)2+56=2(D2+E2-4F). ②
又圆心在直线x-3y=0上,
所以D-3E=0. ③
联立①②③,解得或
故所求圆的方程为x2+y2-6x-2y+1=0或x2+y2+6x+2y+1=0.
答案:x2+y2-6x-2y+1=0或x2+y2+6x+2y+1=0
10.设抛物线C:y2=4x的焦点为F,过F且斜率为k(k>0)的直线l与C交于A,B两点,|AB|=8.
(1)求l的方程;
(2)求过点A,B且与C的准线相切的圆的方程.
解:(1)由题意得F(1,0),l的方程为y=k(x-1)(k>0).
设A(x1,y1),B(x2,y2).
由得k2x2-(2k2+4)x+k2=0.
Δ=16k2+16>0,故x1+x2=.
所以|AB|=|AF|+|BF|=(x1+1)+(x2+1)=.
由题设知=8,解得k=-1(舍去),k=1.因此l的方程为y=x-1.
(2)由(1)得AB的中点坐标为(3,2),所以AB的垂直平分线方程为y-2=-(x-3),即y=-x+5.设所求圆的圆心坐标为(x0,y0),则
解得或
因此所求圆的方程为(x-3)2+(y-2)2=16或(x-11)2+(y+6)2=144.
[综合题组练]
1.自圆C:(x-3)2+(y+4)2=4外一点P(x,y)引该圆的一条切线,切点为Q,PQ的长度等于点P到原点O的距离,则点P的轨迹方程为( )
A.8x-6y-21=0 B.8x+6y-21=0
C.6x+8y-21=0 D.6x-8y-21=0
解析:选D.由题意得,圆心C的坐标为(3,-4),半径r=2,如图.
因为|PQ|=|PO|,且PQ⊥CQ,
所以|PO|2+r2=|PC|2,
所以x2+y2+4=(x-3)2+(y+4)2,
即6x-8y-21=0,所以点P的轨迹方程为6x-8y-21=0,故选D.
2.设点P是函数y=-的图象上的任意一点,点Q(2a,a-3)(a∈R),则|PQ|的最小值为( )
A.-2 B.
C.-2 D.-2
解析:选C.如图所示,点P在半圆C(实线部分)上,且由题意知,C(1,0),点Q在直线l:x-2y-6=0上.过圆心C作直线l的垂线,垂足为点A,则|CA|=,|PQ|min=|CA|-2=-2.故选C.
3.(2020·福建厦门一模)在△ABC中,AB=4,AC=2,A=,动点P在以点A为圆心,半径为1的圆上,则·的最小值为________.
解析:如图,以点A为原点,AB边所在直线为x轴建立平面直角坐标系.
则A(0,0),B(4,0),C(1,),设P(x,y),则=(4-x,-y),=(1-x,-y),
所以·=(4-x)(1-x)-y(-y)=x2-5x+y2-y+4=+-3,其中+表示圆A上的点P与点M之间距离|PM|的平方,由几何图形可得|PM|min=|AM|-1=-1=-1,
所以(·)min=(-1)2-3=5-2.
答案:5-2
4.已知以点P为圆心的圆经过点A(-1,0)和B(3,4),线段AB的垂直平分线交圆P于点C和D,且|CD|=4.则直线CD的方程为________,圆P的方程为________.
解析:由题意知,直线AB的斜率k=1,中点坐标为(1,2).
则直线CD的方程为y-2=-(x-1),即x+y-3=0.
设圆心P(a,b),则由点P在CD上得a+b-3=0.①
又因为直径|CD|=4,所以|PA|=2,
所以(a+1)2+b2=40.②
由①②解得或
所以圆心P(-3,6)或P(5,-2).
所以圆P的方程为(x+3)2+(y-6)2=40或(x-5)2+(y+2)2=40.
答案:x+y-3=0 (x+3)2+(y-6)2=40或(x-5)2+(y+2)2=40
5.已知方程x2+y2-2x-4y+m=0.
(1)若此方程表示圆,求实数m的取值范围;
(2)若(1)中的圆与直线x+2y-4=0相交于M,N两点,且OM⊥ON(O为坐标原点),求m的值;
(3)在(2)的条件下,求以MN为直径的圆的方程.
解:(1)由D2+E2-4F>0得(-2)2+(-4)2-4m>0,解得m<5.
(2)设M(x1,y1),N(x2,y2),由x+2y-4=0得x=4-2y;将x=4-2y代入x2+y2-2x-4y+m=0得5y2-16y+8+m=0,所以y1+y2=,y1y2=.因为OM⊥ON,所以·=-1,即x1x2+y1y2=0.因为x1x2=(4-2y1)(4-2y2)=16-8(y1+y2)+4y1y2,所以x1x2+y1y2=16-8(y1+y2)+5y1y2=0,即(8+m)-8×+16=0,解得m=.
(3)设圆心C的坐标为(a,b),则a=(x1+x2)=,b=(y1+y2)=,半径r=|OC|=,所以所求圆的方程为+=.
6.在平面直角坐标系xOy中,曲线Γ:y=x2-mx+2m(m∈R)与x轴交于不同的两点A,B,曲线Γ与y轴交于点C.
(1)是否存在以AB为直径的圆过点C?若存在,求出该圆的方程;若不存在,请说明理由.
(2)求证:过A,B,C三点的圆过定点.
解:由曲线Γ:y=x2-mx+2m(m∈R),令y=0,得x2-mx+2m=0.
设A(x1,0),B(x2,0),则可得Δ=m2-8m>0,x1+x2=m,x1x2=2m.
令x=0,得y=2m,即C(0,2m).
(1)若存在以AB为直径的圆过点C,则·=0,得x1x2+4m2=0,即2m+4m2=0,所以m=0或m=-.
由Δ>0得m<0或m>8,所以m=-,
此时C(0,-1),AB的中点M即圆心,半径r=|CM|=,
故所求圆的方程为+y2=.
(2)证明:设过A,B两点的圆的方程为x2+y2-mx+Ey+2m=0,
将点C(0,2m)代入可得E=-1-2m,
所以过A,B,C三点的圆的方程为x2+y2-mx-(1+2m)y+2m=0,
整理得x2+y2-y-m(x+2y-2)=0.
令可得或
故过A,B,C三点的圆过定点(0,1)和.
一、知识梳理
1.圆的定义及方程
定义
平面内与定点的距离等于定长的点的集合(轨迹)叫做圆
标准方程
(x-a)2+(y-b)2=r2(r>0)
圆心:(a,b),半径:r
一般方程
x2+y2+Dx+Ey+F=0(D2+E2-4F>0)
圆心:,
半径:
2.点与圆的位置关系
点M(x0,y0)与圆(x-a)2+(y-b)2=r2的位置关系:
(1)若M(x0,y0)在圆外,则(x0-a)2+(y0-b)2>r2.
(2)若M(x0,y0)在圆上,则(x0-a)2+(y0-b)2=r2.
(3)若M(x0,y0)在圆内,则(x0-a)2+(y0-b)2<r2.
常用结论
几种常见圆的方程的设法
标准方程的设法
一般方程的设法
圆心在原点
x2+y2=r2
x2+y2-r2=0
续 表
标准方程的设法
一般方程的设法
过原点
(x-a)2+(y-b)2=a2+b2
x2+y2+Dx+Ey=0
圆心在x轴上
(x-a)2+y2=r2
x2+y2+Dx+F=0
圆心在y轴上
x2+(y-b)2=r2
x2+y2+Ey+F=0
与x轴相切
(x-a)2+(y-b)2=b2
x2+y2+Dx+Ey+D2=0
与y轴相切
(x-a)2+(y-b)2=a2
x2+y2+Dx+Ey+E2=0
二、教材衍化
1.以点(3,-1)为圆心,并且与直线3x+4y=0相切的圆的方程是( )
A.(x-3)2+(y+1)2=1
B.(x-3)2+(y-1)2=1
C.(x+3)2+(y-1)2=1
D.(x+3)2+(y+1)2=1
答案:A
2.圆x2+y2-4x+6y=0的圆心坐标为________,半径为________.
解析:x2+y2-4x+6y=0,得(x-2)2+(y+3)2=13.
所以圆心坐标为(2,-3),半径为.
答案:(2,-3)
3.圆C的圆心在x轴上,并且过点A(-1,1)和B(1,3),则圆C的方程为________.
解析:设圆心坐标为C(a,0),
因为点A(-1,1)和B(1,3)在圆C上,
所以|CA|=|CB|,
即=,
解得a=2,
所以圆心为C(2,0),
半径|CA|==,
所以圆C的方程为(x-2)2+y2=10.
答案:(x-2)2+y2=10
一、思考辨析
判断正误(正确的打“√”,错误的打“×”)
(1)已知点A(x1,y1),B(x2,y2),则以AB为直径的圆的方程是(x-x1)(x-x2)+(y-y1)(y-y2)=0.( )
(2)方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的充要条件是A=C≠0,B=0,D2+E2-4AF>0.( )
(3)方程x2+2ax+y2=0一定表示圆.( )
(4)(x-2)2+(y+1)2=a2(a≠0)表示以(2,1)为圆心,a为半径的圆.( )
(5)圆x2+2x+y2+y=0的圆心是.( )
(6)若点M(x0,y0)在圆x2+y2+Dx+Ey+F=0外,则x+y+Dx0+Ey0+F<0.( )
答案:(1)√ (2)√ (3)× (4)× (5)× (6)×
二、易错纠偏
(1)忽视表示圆的充要条件D2+E2-4F>0;
(2)错用点与圆的位置关系;
(3)不能正确确定圆心坐标.
1.若方程x2+y2+mx-2y+3=0表示圆,则m的取值范围是________.
解析:将x2+y2+mx-2y+3=0化为圆的标准方程得+(y-1)2=-2.
由其表示圆可得-2>0,解得m<-2或m>2.
答案:(-∞,-2)∪(2,+∞)
2.若点(1,1)在圆(x-a)2+(y+a)2=4的内部,则实数a的取值范围是________.
解析:因为点(1,1)在圆内,
所以(1-a)2+(a+1)2<4,即-1 答案:(-1,1)
3.若圆C的半径为1,圆心在第一象限,且与直线4x-3y=0和x轴都相切,则该圆的标准方程是________.
解析:由于圆心在第一象限且与x轴相切,可设圆心为(a,1)(a>0),又圆与直线4x-3y=0相切,
所以=1,解得a=2或a=-(舍去).
所以圆的标准方程为(x-2)2+(y-1)2=1.
答案:(x-2)2+(y-1)2=1
求圆的方程(多维探究)
角度一 已知不共线的三点,求圆的方程
(一题多解)已知圆E经过三点A(0,1),B(2,0),C(0,-1),且圆心在x轴的正半轴上,则圆E的标准方程为________.
【解析】 法一(待定系数法):根据题意,设圆E的圆心坐标为(a,0)(a>0),半径为r,则圆E的标准方程为(x-a)2+y2=r2(a>0).
由题意得解得
所以圆E的标准方程为+y2=.
法二(待定系数法):设圆E的一般方程为x2+y2+Dx+Ey+F=0(D2+E2-4F>0),
则由题意得解得
所以圆E的一般方程为x2+y2-x-1=0,
即+y2=.
法三(几何法):因为圆E经过点A(0,1),B(2,0),所以圆E的圆心在线段AB的垂直平分线y-=2(x-1)上.
又圆E的圆心在x轴的正半轴上,所以圆E的圆心坐标为.
则圆E的半径为EB==,
所以圆E的标准方程为+y2=.
【答案】 +y2=
角度二 已知两点及圆心所在直线,求圆的方程
(一题多解)求圆心在直线x-2y-3=0上,且过点A(2,-3),B(-2,-5)的圆的方程.
【解】 法一:设点C为圆心,因为点C在直线x-2y-3=0上,
所以可设点C的坐标为(2a+3,a).
又该圆经过A,B两点,
所以|CA|=|CB|,
即=,解得a=-2,
所以圆心C的坐标为(-1,-2),半径r=.
故所求圆的方程为(x+1)2+(y+2)2=10.
法二:设所求圆的标准方程为(x-a)2+(y-b)2=r2,
由题意得解得
故所求圆的方程为(x+1)2+(y+2)2=10.
法三:设圆的一般方程为x2+y2+Dx+Ey+F=0,则圆心坐标为.
由题意得解得
故所求圆的方程为x2+y2+2x+4y-5=0.
角度三 已知直线与圆的位置关系,求圆的方程
(1)已知圆C与直线y=x及x-y-4=0都相切,且圆心在直线y=-x上,则圆C的方程为________.
(2)圆心在直线x-2y=0上的圆C与y轴的正半轴相切,圆C截x轴所得弦的长为2,则圆C的标准方程为__________________.
【解析】 (1)x-y=0和x-y-4=0之间的距离为=2,所以圆的半径为.又因为y=-x与x-y=0,x-y-4=0均垂直,所以由y=-x和x-y=0联立得交点坐标为(0,0),由y=-x和x-y-4=0联立得交点坐标为(2,-2),所以圆心坐标为(1,-1),故圆C的方程为(x-1)2+(y+1)2=2.
(2)设圆C的圆心为(a,b)(b>0),由题意得a=2b>0,且a2=()2+b2,解得a=2,b=1.
所以所求圆的标准方程为(x-2)2+(y-1)2=4.
【答案】 (1)(x-1)2+(y+1)2=2 (2)(x-2)2+(y-1)2=4
求圆的方程的两种方法
(1)直接法
根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程.
(2)待定系数法
①若已知条件与圆心(a,b)和半径r有关,则设圆的标准方程,依据已知条件列出关于a,b,r的方程组,从而求出a,b,r的值;
②若已知条件没有明确给出圆心或半径,则选择圆的一般方程,依据已知条件列出关于D,E,F的方程组,进而求出D,E,F的值.
[提醒] 解答圆的有关问题,应注意数形结合,充分运用圆的几何性质.
1.(一题多解)(2020·陕西西安一模)已知圆C截两坐标轴所得弦长相等,且圆C过点(-1,0)和(2,3),则圆C的半径为( )
A.8 B.2
C.5 D.
解析:选D.法一:设圆的标准方程为(x-a)2+(y-b)2=r2(r>0).因为圆C经过点(-1,0)和(2,3),所以所以a+b-2=0,①
又圆C截两坐标轴所得弦长相等,所以|a|=|b|,②
由①②得a=b=1,所以圆C的半径为,故选D.
法二:因为圆C经过点M(-1,0)和N(2,3),所以圆心C在线段MN的垂直平分线y=-x+2上,又圆C截两坐标轴所得弦长相等,所以圆心C到两坐标的距离相等,所以圆心C在直线y=±x上,因为直线y=-x和直线y=-x+2平行,所以圆心C为直线y=x和直线y=-x+2的交点(1,1),所以圆C的半径为.故选D.
2.(2020·湖北“荆、襄、宜七校考试联盟”期末)已知圆C经过直线x+y+2=0与圆x2+y2=4的交点,且圆C的圆心在直线2x-y-3=0上,则圆C的方程为________.
解析:设所求圆的方程为(x2+y2-4)+a(x+y+2)=0,a≠0,即x2+y2+ax+ay-4+2a=0,
所以圆心为,因为圆心在直线2x-y-3=0,所以-a+-3=0,所以a=-6.
所以圆的方程为x2+y2-6x-6y-16=0,即(x-3)2+(y-3)2=34.
答案:(x-3)2+(y-3)2=34
与圆有关的轨迹问题(师生共研)
已知过原点O的动直线l与圆C1:x2+y2-6x+5=0相交于不同的两点A,B.
(1)求圆C1的圆心坐标;
(2)求线段AB的中点M的轨迹方程.
【解】 (1)由x2+y2-6x+5=0得(x-3)2+y2=4,
所以圆C1的圆心坐标为(3,0).
(2)设M(x,y),
因为点M为线段AB的中点,
所以C1M⊥OM,
所以kC1M·kAB=-1,当x≠3时可得·=-1,整理得+y2=,
又当直线l与x轴重合时,M点坐标为(3,0),代入上式成立.
设直线l的方程为y=kx,与x2+y2-6x+5=0联立,
消去y得:(1+k2)x2-6x+5=0.
令其判别式Δ=(-6)2-4(1+k2)×5=0,得k2=,此时方程为x2-6x+5=0,解得x=,因此
求与圆有关的轨迹方程的方法
已知圆x2+y2=4上一定点A(2,0),B(1,1)为圆内一点,P,Q为圆上的动点.
(1)求线段AP中点的轨迹方程;
(2)若∠PBQ=90°,求线段PQ中点的轨迹方程.
解:(1)设AP的中点为M(x,y),由中点坐标公式可知,P点坐标为(2x-2,2y).
因为P点在圆x2+y2=4上,
所以(2x-2)2+(2y)2=4.
故线段AP中点的轨迹方程为(x-1)2+y2=1.
(2)设PQ的中点为N(x,y),在Rt△PBQ中,|PN|=|BN|,
设O为坐标原点,连接ON(图略),则ON⊥PQ,所以|OP|2=|ON|2+|PN|2=|ON|2+|BN|2,
所以x2+y2+(x-1)2+(y-1)2=4.
故线段PQ中点的轨迹方程为x2+y2-x-y-1=0.
与圆有关的最值问题(多维探究)
角度一 利用几何性质求最值
已知实数x,y满足方程x2+y2-4x+1=0,则(1)的最大值和最小值分别为________和________;
(2)y-x的最大值和最小值分别为________和________;
(3)x2+y2的最大值和最小值分别为________和________.
【解析】 原方程可化为(x-2)2+y2=3,表示以(2,0)为圆心,为半径的圆.
(1)的几何意义是圆上一点与原点连线的斜率,所以设=k,即y=kx.当直线y=kx与圆相切时(如图),斜率k取最大值或最小值,此时=,解得k=±.所以的最大值为,最小值为-.
(2)y-x可以看作是直线y=x+b在y轴上的截距.如图所示,当直线y=x+b与圆相切时,纵截距b取得最大值或最小值,此时=,解得b=-2±,所以y-x的最大值为-2+,最小值为-2-.
(3)x2+y2表示圆上的一点与原点距离的平方.由平面几何知识知,在原点和圆心连线与圆的两个交点处取得最大值和最小值.又圆心到原点的距离为2,所以x2+y2的最大值是(2+)2=7+4,x2+y2的最小值是(2-)2=7-4.
【答案】 (1) - (2)-2+ -2- (3)7+4 7-4
借助几何性质求与圆有关的最值问题,根据代数式的几何意义,借助数形结合思想求解.
(1)形如μ=形式的最值问题,可转化为动直线斜率的最值问题或转化为线性规划问题.
(2)形如t=ax+by形式的最值问题,可转化为动直线截距的最值问题或转化为线性规划问题.
(3)形如(x-a)2+(y-b)2形式的最值问题,可转化为动点到定点的距离的平方的最值问题.
角度二 建立函数关系求最值
(2020·黄山模拟)设点P(x,y)是圆:x2+(y-3)2=1上的动点,定点A(2,0),B(-2,0),则·的最大值为________.
【解析】 由题意,知=(2-x,-y),=(-2-x,-y),所以·=x2+y2-4,由于点P(x,y)是圆上的点,故其坐标满足方程x2+(y-3)2=1,故x2=-(y-3)2+1,所以·=-(y-3)2+1+y2-4=6y-12.由圆的方程x2+(y-3)2=1,易知2≤y≤4,所以当y=4时,·的值最大,最大值为6×4-12=12.
【答案】 12
根据题中条件列出相关的函数关系式,再根据函数知识或基本不等式求最值.
1.已知点A(-1,0),B(0,2),点P是圆(x-1)2+y2=1上任意一点,则△PAB面积的最大值与最小值分别是( )
A.2,(4-) B.(4+),(4-)
C.,4- D.(+2),(-2)
解析:选B.由题意知|AB|==,
lAB:2x-y+2=0,
由题意知圆心坐标为(1,0),
所以圆心到直线lAB的距离d===.
所以S△PAB的最大值为××=(4+),
S△PAB的最小值为××=(4-).
2.已知实数x,y满足(x-2)2+(y-1)2=1,则z=的最大值与最小值分别为________和________.
解析:由题意,得表示过点A(0,-1)和圆(x-2)2+(y-1)2=1上的动点P(x,y)的直线的斜率.当且仅当直线与圆相切时,直线的斜率分别取得最大值和最小值.设切线方程为y=kx-1,即kx-y-1=0,则=1,解得k=,所以zmax=,zmin=.
答案:
3.设点P(x,y)是圆:(x-3)2+y2=4上的动点,定点A(0,2),B(0,-2),则|+|的最大值为________.
解析:由题意,知=(-x,2-y),=(-x,-2-y),所以+=(-2x,-2y),由于点P(x,y)是圆上的点,故其坐标满足方程(x-3)2+y2=4,故y2=-(x-3)2+4,所以|+|==2.由圆的方程(x-3)2+y2=4,易知1≤x≤5,所以当x=5时,|+|的值最大,最大值为2=10.
答案:10
[基础题组练]
1.圆心在y轴上,半径为1,且过点(1,2)的圆的方程是( )
A.x2+(y-2)2=1 B.x2+(y+2)2=1
C.(x-1)2+(y-3)2=1 D.x2+(y-3)2=1
解析:选A.设圆心为(0,a),则=1,
解得a=2,故圆的方程为x2+(y-2)2=1.故选A.
2.(2020·河北省九校第二次联考)圆C的半径为2,圆心在x轴的正半轴上,直线3x+4y+4=0与圆C相切,则圆C的方程为( )
A.x2+y2-2x-3=0 B.x2+y2+4x=0
C.x2+y2-4x=0 D.x2+y2+2x-3=0
解析:选C.由题意设所求圆的方程为(x-m)2+y2=4(m>0),则=2,解得m=2或m=-(舍去),故所求圆的方程为(x-2)2+y2=4,即x2+y2-4x=0.故选C.
3.方程|x|-1=所表示的曲线是( )
A.一个圆 B.两个圆
C.半个圆 D.两个半圆
解析:选D.由题意得即或
故原方程表示两个半圆.
4.(一题多解)在平面直角坐标系中,O为坐标原点,A(8,0),以OA为直径的圆与直线y=2x在第一象限的交点为B,则直线AB的方程为( )
A.x+2y-8=0 B.x-2y-8=0
C.2x+y-16=0 D.2x-y-16=0
解析:选A.法一:如图,由题意知OB⊥AB,因为直线OB的方程为y=2x,所以直线AB的斜率为-,因为A(8,0),所以直线AB的方程为y-0=-(x-8),即x+2y-8=0,故选A.
法二:依题意,以OA为直径的圆的方程为(x-4)2+y2=16,
解方程组,得或(舍去),即B,因为A(8,0),所以kAB==-,所以直线AB的方程为y-0=-(x-8),即x+2y-8=0,故选A.
5.(2020·河北五个一名校联盟一诊)已知点P为圆C:(x-1)2+(y-2)2=4上一点,A(0,-6),B(4,0),则|+|的最大值为( )
A.+2 B.+4
C.2+4 D.2+2
解析:选C.取AB的中点D(2,-3),则+=2,|+|=|2|,||的最大值为圆心C(1,2)与D(2,-3)的距离d再加半径r,又d==,所以d+r=+2.
所以|2|的最大值为2+4.故选C.
6.点M,N是圆x2+y2+kx+2y-4=0上的不同两点,且点M,N关于直线x-y+1=0对称,则该圆的半径为________.
解析:圆x2+y2+kx+2y-4=0的圆心坐标为.因为点M,N在圆x2+y2+kx+2y-4=0上,且点M,N关于直线x-y+1=0对称,所以直线x-y+1=0经过圆心,即-+1+1=0,k=4.所以圆的方程为x2+y2+4x+2y-4=0,圆的半径为×=3.
答案:3
7.已知圆C的圆心在x轴的正半轴上,点M(0,)在圆C上,且圆心到直线2x-y=0的距离为,则圆C的方程为________________.
解析:因为圆C的圆心在x轴的正半轴上,设C(a,0),且a>0,所以圆心到直线2x-y=0的距离d==,
解得a=2,所以圆C的半径r=|CM|==3,
所以圆C的方程为(x-2)2+y2=9.
答案:(x-2)2+y2=9
8.已知点P(2,2),圆C:x2+y2-8y=0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点,则点M的轨迹方程为________________.
解析:圆C的方程可化为x2+(y-4)2=16,
所以圆心为C(0,4),半径为4.
设M(x,y),则=(x,y-4),=(2-x,2-y).
由题设知·=0,故x(2-x)+(y-4)(2-y)=0.
即(x-1)2+(y-3)2=2.
由于点P在圆C的内部,所以点M的轨迹方程是(x-1)2+(y-3)2=2.
答案:(x-1)2+(y-3)2=2
9.(一题多解)一个圆与y轴相切,圆心在直线x-3y=0上,且在直线y=x上截得的弦长为2,则该圆的方程为________.
解析:法一:因为所求圆的圆心在直线x-3y=0上,
所以设所求圆的圆心为(3a,a),
又所求圆与y轴相切,
所以半径r=3|a|,
又所求圆在直线y=x上截得的弦长为2,圆心(3a,a)到直线y=x的距离d=,
所以d2+()2=r2,
即2a2+7=9a2,所以a=±1.
故所求圆的方程为(x-3)2+(y-1)2=9或(x+3)2+(y+1)2=9,即x2+y2-6x-2y+1=0或x2+y2+6x+2y+1=0.
法二:设所求圆的方程为(x-a)2+(y-b)2=r2,
则圆心(a,b)到直线y=x的距离为,
所以r2=+7,即2r2=(a-b)2+14. ①
由于所求圆与y轴相切,所以r2=a2, ②
又因为所求圆的圆心在直线x-3y=0上,
所以a-3b=0, ③
联立①②③,解得或
故所求圆的方程为(x-3)2+(y-1)2=9或(x+3)2+(y+1)2=9,即x2+y2-6x-2y+1=0或x2+y2+6x+2y+1=0.
法三:设所求圆的方程为x2+y2+Dx+Ey+F=0,则圆心的坐标为,
半径r=.
在圆的方程中,令x=0,得y2+Ey+F=0.
由于所求圆与y轴相切,
所以Δ=0,则E2=4F. ①
圆心到直线y=x的距离为d=,
由已知得d2+()2=r2,
即(D-E)2+56=2(D2+E2-4F). ②
又圆心在直线x-3y=0上,
所以D-3E=0. ③
联立①②③,解得或
故所求圆的方程为x2+y2-6x-2y+1=0或x2+y2+6x+2y+1=0.
答案:x2+y2-6x-2y+1=0或x2+y2+6x+2y+1=0
10.设抛物线C:y2=4x的焦点为F,过F且斜率为k(k>0)的直线l与C交于A,B两点,|AB|=8.
(1)求l的方程;
(2)求过点A,B且与C的准线相切的圆的方程.
解:(1)由题意得F(1,0),l的方程为y=k(x-1)(k>0).
设A(x1,y1),B(x2,y2).
由得k2x2-(2k2+4)x+k2=0.
Δ=16k2+16>0,故x1+x2=.
所以|AB|=|AF|+|BF|=(x1+1)+(x2+1)=.
由题设知=8,解得k=-1(舍去),k=1.因此l的方程为y=x-1.
(2)由(1)得AB的中点坐标为(3,2),所以AB的垂直平分线方程为y-2=-(x-3),即y=-x+5.设所求圆的圆心坐标为(x0,y0),则
解得或
因此所求圆的方程为(x-3)2+(y-2)2=16或(x-11)2+(y+6)2=144.
[综合题组练]
1.自圆C:(x-3)2+(y+4)2=4外一点P(x,y)引该圆的一条切线,切点为Q,PQ的长度等于点P到原点O的距离,则点P的轨迹方程为( )
A.8x-6y-21=0 B.8x+6y-21=0
C.6x+8y-21=0 D.6x-8y-21=0
解析:选D.由题意得,圆心C的坐标为(3,-4),半径r=2,如图.
因为|PQ|=|PO|,且PQ⊥CQ,
所以|PO|2+r2=|PC|2,
所以x2+y2+4=(x-3)2+(y+4)2,
即6x-8y-21=0,所以点P的轨迹方程为6x-8y-21=0,故选D.
2.设点P是函数y=-的图象上的任意一点,点Q(2a,a-3)(a∈R),则|PQ|的最小值为( )
A.-2 B.
C.-2 D.-2
解析:选C.如图所示,点P在半圆C(实线部分)上,且由题意知,C(1,0),点Q在直线l:x-2y-6=0上.过圆心C作直线l的垂线,垂足为点A,则|CA|=,|PQ|min=|CA|-2=-2.故选C.
3.(2020·福建厦门一模)在△ABC中,AB=4,AC=2,A=,动点P在以点A为圆心,半径为1的圆上,则·的最小值为________.
解析:如图,以点A为原点,AB边所在直线为x轴建立平面直角坐标系.
则A(0,0),B(4,0),C(1,),设P(x,y),则=(4-x,-y),=(1-x,-y),
所以·=(4-x)(1-x)-y(-y)=x2-5x+y2-y+4=+-3,其中+表示圆A上的点P与点M之间距离|PM|的平方,由几何图形可得|PM|min=|AM|-1=-1=-1,
所以(·)min=(-1)2-3=5-2.
答案:5-2
4.已知以点P为圆心的圆经过点A(-1,0)和B(3,4),线段AB的垂直平分线交圆P于点C和D,且|CD|=4.则直线CD的方程为________,圆P的方程为________.
解析:由题意知,直线AB的斜率k=1,中点坐标为(1,2).
则直线CD的方程为y-2=-(x-1),即x+y-3=0.
设圆心P(a,b),则由点P在CD上得a+b-3=0.①
又因为直径|CD|=4,所以|PA|=2,
所以(a+1)2+b2=40.②
由①②解得或
所以圆心P(-3,6)或P(5,-2).
所以圆P的方程为(x+3)2+(y-6)2=40或(x-5)2+(y+2)2=40.
答案:x+y-3=0 (x+3)2+(y-6)2=40或(x-5)2+(y+2)2=40
5.已知方程x2+y2-2x-4y+m=0.
(1)若此方程表示圆,求实数m的取值范围;
(2)若(1)中的圆与直线x+2y-4=0相交于M,N两点,且OM⊥ON(O为坐标原点),求m的值;
(3)在(2)的条件下,求以MN为直径的圆的方程.
解:(1)由D2+E2-4F>0得(-2)2+(-4)2-4m>0,解得m<5.
(2)设M(x1,y1),N(x2,y2),由x+2y-4=0得x=4-2y;将x=4-2y代入x2+y2-2x-4y+m=0得5y2-16y+8+m=0,所以y1+y2=,y1y2=.因为OM⊥ON,所以·=-1,即x1x2+y1y2=0.因为x1x2=(4-2y1)(4-2y2)=16-8(y1+y2)+4y1y2,所以x1x2+y1y2=16-8(y1+y2)+5y1y2=0,即(8+m)-8×+16=0,解得m=.
(3)设圆心C的坐标为(a,b),则a=(x1+x2)=,b=(y1+y2)=,半径r=|OC|=,所以所求圆的方程为+=.
6.在平面直角坐标系xOy中,曲线Γ:y=x2-mx+2m(m∈R)与x轴交于不同的两点A,B,曲线Γ与y轴交于点C.
(1)是否存在以AB为直径的圆过点C?若存在,求出该圆的方程;若不存在,请说明理由.
(2)求证:过A,B,C三点的圆过定点.
解:由曲线Γ:y=x2-mx+2m(m∈R),令y=0,得x2-mx+2m=0.
设A(x1,0),B(x2,0),则可得Δ=m2-8m>0,x1+x2=m,x1x2=2m.
令x=0,得y=2m,即C(0,2m).
(1)若存在以AB为直径的圆过点C,则·=0,得x1x2+4m2=0,即2m+4m2=0,所以m=0或m=-.
由Δ>0得m<0或m>8,所以m=-,
此时C(0,-1),AB的中点M即圆心,半径r=|CM|=,
故所求圆的方程为+y2=.
(2)证明:设过A,B两点的圆的方程为x2+y2-mx+Ey+2m=0,
将点C(0,2m)代入可得E=-1-2m,
所以过A,B,C三点的圆的方程为x2+y2-mx-(1+2m)y+2m=0,
整理得x2+y2-y-m(x+2y-2)=0.
令可得或
故过A,B,C三点的圆过定点(0,1)和.
相关资料
更多