【精品讲义】人教版 九年级上册数学 专题04 圆章末重难点题型(举一反三)(人教版)(原卷版)
展开专题04 圆章末重难点题型【举一反三】
【人教版】
【考点1 圆的相关概念】
【方法点拨】解决此类问题的关键是圆中的半径所构成等腰三角形的灵活应用.
【例1】(2019•邗江区校级一模)如图,⊙O的直径BA的延长线与弦DC的延长线交于点E,且CE=OB,
已知∠DOB=72°,则∠E等于( )
A.36° B.30° C.18° D.24°
【变式1-1】(2019•陕西模拟)如图,在△ABC中,∠ACB=90°,∠A=40°,以C为圆心,CB为半径的
圆交AB于点D,连接CD,则∠ACD=( )
A.10° B.15° C.20° D.25°
【变式1-2】(2019秋•萧山区期中)如图,半圆O是一个量角器,△AOB为一纸片,AB交半圆于点D,
OB交半圆于点C,若点C、D、A在量角器上对应读数分别为45°,70°,160°,则∠B的度数为( )
A.20° B.30° C.45° D.60°
【变式1-3】(2018秋•瑞安市期末)如图,A,B,C是⊙O上的三点,AB,AC的圆心O的两侧,若∠ABO
=20°,∠ACO=30°,则∠BOC的度数为( )
A.100° B.110° C.125° D.130°
【考点2 垂径定理求线段】
【方法点拨】垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。
推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;
弦的垂直平分线过圆心,且平分弦对的两条弧.
【例2】(2019•柯桥区模拟)如图,⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OC=4:5,则AB的长为( )
A.6 B.7 C.8 D.9
【变式2-1】(2019•渝中区校级三模)如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EB.若AB=4,CD=1,则EB的长为( )
A.3 B.4 C.5 D.2.5
【变式2-2】(2019•庐阳区二模)如图,AC是⊙O的直径,弦BD⊥AC于点E,连接BC过点O作OF⊥BC于点F,若BD=12cm,AE=4cm,则OF的长度是( )
A. B. C. D.3cm
【变式2-3】(2019•梧州)如图,在半径为的⊙O中,弦AB与CD交于点E,∠DEB=75°,AB=6,AE=1,则CD的长是( )
A.2 B.2 C.2 D.4
【考点3 圆周角定理】
【方法点拨】圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。
推论1:同弧或等弧所对的圆周角相等。
推论2:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。
【例3】(2019•营口)如图,BC是⊙O的直径,A,D是⊙O上的两点,连接AB,AD,BD,若∠ADB=
70°,则∠ABC的度数是( )
A.20° B.70° C.30° D.90°
【变式3-1】(2019•相城区校级二模)如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是上的
点.若∠BOC=50°,则∠D的度数( )
A.105° B.115° C.125° D.85°
【变式3-2】(2019•碑林区校级一模)如图,AD是半圆的直径,点C是弧BD的中点,∠ADC=55°,则
∠BAD等于( )
A.50° B.55° C.65° D.70°
【变式3-3】(2019•太原二模)如图,AB是⊙O的直径,点C在⊙O上,CD平分∠ACB交⊙O于点D,
若∠ABC=30°,则∠CAD的度数为( )
A.l00° B.105° C.110° D.120
【考点4 圆的内接四边形】
【方法点拨】圆内接四边形的性质:圆内接四边形的对角互补,且任意一个角的外角都等于其内对角.
【例4】(2019•蓝田县一模)如图,点A、B、C、D在⊙O上,,∠CAD=30°,∠ACD=50°,则∠ADB=( )
A.30° B.50° C.70° D.80°
【变式4-1】(2019•澄海区一模)如图,四边形ABCD内接于⊙O,它的一个外角∠EBC=55°,分别连接AC、BD,若AC=AD,则∠DBC的度数为( )
A.50° B.60° C.65° D.70°
【变式4-2】(2019•嘉祥县三模)如图,四边形ABCD内接于⊙O,F是上一点,且=,连接CF并延长交AD的延长线于点E,连接AC,若∠ABC=105°,∠BAC=25°,则∠E的度数为( )
A.45° B.50° C.55° D.60°
【变式4-3】(2018•南岗区一模)如图,四边形ABCD是⊙O的内接四边形,若⊙O的半径为4,且∠B=2∠D,连接AC,则线段AC的长为( )
A.4 B.4 C.6 D.8
【考点5 弧长计算】
【方法点拨】n°的圆心角所对的弧长l为:。
【例5】(2019•鞍山)如图,AC是⊙O的直径,B,D是⊙O上的点,若⊙O的半径为3,∠ADB=30°,
则的长为 .
【变式5-1】(2019•庐江县模拟)如图,AB是⊙O的直径,BC是⊙O的弦,∠ABC的平分线交⊙O于点D.若AB=6,∠BAC=30°,则劣弧的长等于 .
【变式5-2】(2019•泰顺县模拟)如图,△ABC的顶点C在半径为9的⊙O上,∠C=40°,边AC,BC分
别与⊙O交于D,E两点,则劣弧DE的长度为 .
【变式5-3】(2019•瑶海区二模)如图,矩形ABCD中,AB=3,BC=2,E为BC的中点,AF=1,以EF为直径的半圆与DE交于点G,则劣弧的长为 .
【考点6 正多边形与圆】
【方法点拨】定义:正多边形的外接圆的圆心叫做这个正多边形的中心,外接圆的半径叫做正多边形的半径,正多边形每一边所对的圆心角叫做正多边形的中心角,中心正多边形的一边的距离叫做正多边形的边心距。
【例6】(2019•朝阳区校级四模)如图,⊙O与正六边形OABCDE的边OA、OE分别交丁点F、G,点M在FG上,则圆周角∠FMG的大小为度 .
【变式6-1】(2019•海南)如图,⊙O与正五边形ABCDE的边AB、DE分别相切于点B、D,则劣弧所对的圆心角∠BOD的大小为 度.
【变式6-2】(2019•青岛)如图,五边形ABCDE是⊙O的内接正五边形,AF是⊙O的直径,则∠BDF的
度数是 °.
【变式6-3】(2019•江岸区校级模拟)如图,⊙O的半径为2,正八边形ABCDEFGH内接于⊙O,对角线CE、DF相交于点M,则△MEF的面积是 .
【考点7 与圆有关的求最值】
【例7】(2019•清江浦区一模)正△ABC的边长为4,⊙A的半径为2,D是⊙A上动点,E为CD中点,则BE的最大值为 .
【变式7-1】(2019•亭湖区校级三模)如图,在平面直角坐标系中,点P(3,4),⊙P半径为2,A(2.6,0),B(5.2,0),点M是⊙P上的动点,点C是MB的中点,则AC的最小值为 .
【变式7-2】(2018•周村区二模)在Rt△ABC中,∠ACB=90°,AC=8,BC=6,点D是以点A为圆心4为半径的圆上一点,连接BD,点M为BD中点,线段CM长度的最大值为 .
【变式7-3】(2018秋•邗江区期末)如图,在Rt△ABC中,∠C=90°,BC=3,AC=4,D、E分别是AC、BC上的一点,且DE=3,若以DE为直径的圆与斜边AB相交于M、N,则MN的最大值为 .
【考点8 垂径定理的应用】
【例8】(2018秋•朝阳区期末)一些不便于直接测量的圆形孔道的直径可以用如下方法测量.如图,把一
个直径为10mm的小钢球紧贴在孔道边缘,测得钢球顶端离孔道外端的距离为8mm,求这个孔道的直径AB.
【变式8-1】(2018秋•丹江口市期末)在我国古代数学著作《九章算术》中记载了这样一个问题:“今有圆
材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现代语言表述为:如图,AB
为⊙O的直径,弦CD⊥AB于点E,AE=1寸,CD=10寸,求直径AB的长.请你解答这个问题.
【变式8-2】(2018秋•兴化市期中)在直径为1000毫米的圆柱形油罐内装进一些油.其横截面如图.油面宽AB=600毫米.
(1)求油的最大深度;
(2)如果再注入一些油后,油面宽变为800毫米,此时油面上升了多少毫米?
【变式8-3】(2018秋•云安区期末)如图,有一座拱桥是圆弧形,它的跨度AB=60米,拱高PD=18米.
(1)求圆弧所在的圆的半径r的长;
(2)当洪水泛滥到跨度只有30米时,要采取紧急措施,若拱顶离水面只有4米,即PE=4米时,是否要采取紧急措施?
【考点9 切线的性质与判定】
【方法点拨】切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。
切线的性质定理:圆的切线垂直于过切点的半径。
经过圆外一点的圆的切线上,这点和切点之间线段的长,叫做这点到圆的切线长。
【例9】(2019•白银)如图,在△ABC中,AB=AC,∠BAC=120°,点D在BC边上,⊙D经过点A和点
B且与BC边相交于点E.
(1)求证:AC是⊙D的切线;
(2)若CE=2,求⊙D的半径.
【变式9-1】(2019•凉山州)如图,点D是以AB为直径的⊙O上一点,过点B作⊙O的切线,交AD的延长线于点C,E是BC的中点,连接DE并延长与AB的延长线交于点F.
(1)求证:DF是⊙O的切线;
(2)若OB=BF,EF=4,求AD的长.
【变式9-2】(2019•临沂)如图,AB是⊙O的直径,C是⊙O上一点,过点O作OD⊥AB,交BC的延长线于D,交AC于点E,F是DE的中点,连接CF.
(1)求证:CF是⊙O的切线.
(2)若∠A=22.5°,求证:AC=DC.
【变式9-3】(2019•朝阳)如图,四边形ABCD为菱形,以AD为直径作⊙O交AB于点F,连接DB交⊙O于点H,E是BC上的一点,且BE=BF,连接DE.
(1)求证:DE是⊙O的切线.
(2)若BF=2,DH=,求⊙O的半径.
【考点10 圆中阴影面积计算】
【方法点拨】圆心角为n°的扇形面积S为:;
【例10】(2018秋•柯桥区期末)如图,在△ABC中,AB=AC,以AB为直径的圆,交AC于E点,交BC于D点.
(1)若AB=8,∠C=60°,求阴影部分的面积;
(2)当∠A为锐角时,试说明∠A与∠CBE的关系.
【变式10-1】(2018秋•吴兴区期末)如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD,交AD于点E,连结BC.
(1)求证:AE=ED;
(2)若AB=8,∠CBD=30°,求图中阴影部分的面积.
【变式10-2】(2019•长春一模)如图,△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,点E为BC的中点,连接OD、DE.
(1)求证:OD⊥DE.
(2)若∠BAC=30°,AB=8,求阴影部分的面积.
【变式10-3】(2018秋•富阳区期中)如图,在△ABC中,AB=AC,E在AC上,经过A,B,E三点的圆O交BC于点D,且D点是弧BE的中点,
(1)求证AB是圆的直径;
(2)若AB=8,∠C=60°,求阴影部分的面积;
(3)当∠A为锐角时,试说明∠A与∠CBE的关系.