初中数学北师大版九年级上册第一章 特殊平行四边形3 正方形的性质与判定教学设计
展开这是一份初中数学北师大版九年级上册第一章 特殊平行四边形3 正方形的性质与判定教学设计,共4页。教案主要包含了合作探究,导入新课,实践应用,探究新知,课堂总结,发展潜能,布置作业等内容,欢迎下载使用。
1.3 正方形的性质与判定(一)
教学目标
知识与技能:
了解正方形的有关概念,理解并掌握正方形的性质定理.
过程与方法:
经历探索正方形有关性质的过程,在观察中寻求新知,在探究中发展推理能力,逐步掌握说理的基本方法.
情感态度与价值观:
培养合情推理能力和探究习惯,体会平面几何的内在价值.
重难点、关键
重点:探索正方形的性质定理.
难点:掌握正方形的性质的应用方法.
关键:把握正方形既是矩形又是菱形这一特性来学习本节课内容.
教学准备
教师准备:投影仪,制作投影片,补充本节课内容,矩形纸片,活动的菱形框架.
学生准备:复习平行四边形、矩形、菱形性质,预习本节课内容.
学法解析
1.认知起点:已积累了几何中平行四边形、矩形、菱形等知识,在取得一定的经验的基础上,认知正方形.
2.知识线索:
3.学习方式:采用自导自主学习的方法解决重点,突破难点.
教学过程
一、合作探究,导入新课
【显示投影片】
显示内容:展示生活中有关正方形的图片,幻灯片(多幅).
【活动方略】
教师活动:操作投影仪,边展示图片,边提出下面的问题:
1.同学们观察显示的图片后,有什么联想?正方形四条边有什么关系?四个角呢?
2.正方形是矩形吗?是菱形吗?为什么?
3.正方形具有哪些性质呢?
学生活动:观察屏幕上所展示的生活中的正方形图片.进行联想.易知:1.正方形四条边都相等(小学已学过);正方形四个角都是直角(小学学过).
实验活动:教师拿出矩形按左图折叠.然后展开,让学生发现:只要矩形一组邻边相等,这样的矩形就是正方形;同样,教师拿出活动菱形框架,运动中让学生发现:只要菱形有一个内角为90°,这样的特殊菱形也是正方形.
教师活动:组织学生联想正方形还具有哪些性质,板书画出一个正方形,如下图:
学生活动:观察、联想到它是矩形,所以具有矩形的所有性质;它又是菱形,所以它又具有菱形的一切性质,归纳如下:
正方形定义:有一组邻边相等,并且有一个角是直角的平行四边形叫做正方形.
正方形性质:
(1)边的性质:对边平行,四条边都相等.
(2)角的性质:四个角都是直角.
(3)对角线的性质:两条对角线互相垂直平分且相等,每条对角线平分一组对角.
(4)对称性:是轴对称图形,有四条对称轴.
【设计意图】采用合作交流、发现、归纳的方式来解决重点问题,突破难点.
二、实践应用,探究新知
【课堂演练】(投影显示)
演练题1:如图,已知四边形ABCD是正方形,对角线AC与BD相交于O,MN∥AB,且分别与OA、OB相交于M、N.
求证:(1)BM=CN;(2)BM⊥CN.
思路点拨:本题是证明BM=CN,根据正方形性质,可以证明BM、CN所在△BOM与△CON是否全等.(2)在(1)的基础上完成,欲证BM⊥CN.只需证∠5+∠CMG=90°就可以了.
【活动方略】
教师活动:操作投影仪.组织学生演练,巡视,关注“学困生”;等待大部分学生练习做完之后,再请两位学生上台演示,交流.
学生活动:课堂演练,相互讨论,解决演练题的问题.
证:(1)∵四边形ABCD是正方形,
∴∠COB=∠BOM=90°,OC=OB。
∵MN∥AB,∴∠1=∠2,∠ABO=∠3,
又∵∠1=∠ABO=45°,∴∠2=∠3,∴OM=ON,
∴△CON≌△BOM,∴BM=CN.
(2)由(1)知△BOM≌△CON,
∴∠4=∠5,∵∠4+∠BMO=90°,
∴∠5+∠BMC=90°,∴∠CGM=90°,∴BM⊥CN.
演练题2:已知:如图,正方形ABCD中,点E在AD边上,且AE=AD,F为AB的中点,求证:△CEF是直角三角形.
思路点拨:本题要证∠EFC=90°,从已知条件分析可以得到只要利用勾股逆定理,就可以解决问题.这里应用到正方形性质.
【活动方略】
教师活动:用投影仪显示演练题2,组织学生应用正方形和勾股逆定理分析解析,并请同学上讲台分析思路,板演.
学生活动:先独立分析,找到证明思路是利用勾股定理的逆定理解决问题.
证明:设AB=4a,在正方形ABCD中,DC=BC=4a,AF=FB=2a,AE=a,DE=3a.
∵∠B=∠A=∠D=90°,由勾股定理得:
EF2+CF2=(AE2+AF2)+(CB2+BF2)=(a2+4a2)+(16a2+4a2)=25a2,
CE2=CD2+DE2=(4a)2+(3a)2=25a2,
∴EF2+CF2=CE2.
由勾股定理的逆定理可知△CEF是直角三角形.
【设计意图】补充两道关于正方形性质应用的演练题,提高学生的应用能力.
三、课堂总结,发展潜能
【问题提出】
正方形、菱形、矩形、平行四边形四者之间有什么关系?与同学们讨论、交流,并用列表和框图表示出来.
1.平行四边形、矩形、菱形、正方形的性质(投影显示)
2.平行四边形、矩形、菱形、正方形的判定
四、布置作业
教材P22 习题1.7 1、2、3边
角
对角线
平行四边形
矩形
菱形
正方形
平行四边形
矩形
菱形
正方形
相关教案
这是一份初中数学鲁教版 (五四制)八年级下册3 正方形的性质与判定教案,共8页。教案主要包含了学生起点分析,教学任务分析,教学过程设计,教学设计反思等内容,欢迎下载使用。
这是一份数学九年级上册第一章 特殊平行四边形3 正方形的性质与判定第1课时教学设计,共4页。教案主要包含了教学目标,重点难点,教学过程等内容,欢迎下载使用。
这是一份北师大版九年级上册3 正方形的性质与判定教案及反思,共6页。教案主要包含了学生起点分析,教学任务分析,教学过程设计,教学设计反思等内容,欢迎下载使用。