北师大版八年级上册第三章 位置与坐标3 轴对称与坐标变化教学设计及反思
展开教学目的
知识与技能:掌握直角三角形的判别条件,并能进行简单应用;
教学思考:进一步发展数感,增加对勾股数的直观体验,培养从实际问题抽象出数学问题的能力,建立数学模型.
解决问题:会通过边长判断一个三角形是否是直角三角形,并会辨析哪些问题应用哪个结论.
情感态度与价值观:
敢于面对数学学习中的困难,并有独立克服困难和运用知识解决问题的成功经验,进一步体会数学的应用价值,发展运用数学的信心和能力,初步形成积极参与数学活动的意识.
重点、难点
重点:探索并掌握直角三角形的判别条件。
难点:运用直角三角形判别条件解题
教学过程
一、创设情境,激发学生兴趣、导入课题
展示一根用 13 个等距的结把它分成等长的12 段的绳子,请三个同学上台,按老师的要求操作。
甲:同时握住绳子的第一个结和第十三个结。
乙:握住第四个结。 丙:握住第八个结。
拉紧绳子,让一个同学用量角器,测出这三角形其中的最大角。
问:发现这个角是多少?(直角。)
展示投影 1。(书P9图1—10)
教师道白:这是古埃及人曾经用过这种方法得到直角,这个三角形三边长分别为多少?( 3、4、5 ) ,这三边满足了哪些条件? ( ),是不是只有三边长为3、4、 5的三角形才可以成为直角三角形呢?现在请同学们做一做。
二、做一做
下面的三组数分别是一个三角形的三边a、b、c。
5、12、13 7、24、25 8、15、17
1、这三组数都满足吗?
同学们在运算、交流形成共识后,教师要学生完成。
2、分别用每组数为三边作三角形,用量角器量一量,它们都是直角三角形吗?
同学们在在形成共识后板书:
如果三角形的三边长a、b、c满足,那么这个三角形是直角三角形。
满足的三个正整数,称为勾股数。
大家可以想这样的勾股数是很多的。
今后我们可以利用“三角形三边a、b、c满足时,三角形为直角形”来判断三角形的形状,同时也可以用来判定两条直线是否垂直的方法。
三、讲解例题
例1 一个零件的形状如图,按规定这个零件中∠A 与∠BDC都应为直角,工人师傅量得零件各边尺寸:AD = 4,AB = 3, DC = 12 , BC=13,这个零件符合要求吗?
分析:要检验这个零件是否符合要求,只要判断△ADB和△DBC 是否为直角三角形,这样勾股定理的逆定理即可派上用场了。
解:在△ABD中,
所以△ABD为直角三角形 ∠A =90°
在△BDC中,
所以△BDC是直角三角形∠CDB =90°
因此这个零件符合要求。
四、随堂练习:
⒈下列几组数能否作为直角三角形的三边长?说说你的理由.
⑴9,12,15;⑵15,36,39;
⑶12,35,36;⑷12,18,22.
⒉已知∆ABC中BC=41, AC=40, AB=9, 则此三角形为_______三角形, ______是最大角.
⒊四边形ABCD中已知AB=3,BC=4,CD=12,DA=13,且∠ABC=900,求这个四边形的面积.
⒋习题1.3
五、读一读
P11 勾股数组与费马大定理。⒈直角三角形判定定理:如果三角形的三边长a,b,c六、小结:
1、满足a2 +b2=c2 ,那么这个三角形是直角三角形.
2、满足a2 +b2=c2的三个正整数,称为勾股数.勾股数扩大相同倍数后,仍为勾股数.
七、作业
1、课本 P12 1 .3 1、2、3。
教学反思:这是勾股定理的逆应用。大部分的同学只要能正确掌握勾股定理的话,都不难理解。当然勾股定理的理解掌握是关键。
八年级数学教案:得到直角三角形吗: 这是一份八年级数学教案:得到直角三角形吗,共10页。教案主要包含了学生起点分析,学习任务分析,教法学法,教学过程设计,教学反思等内容,欢迎下载使用。
北师大版八年级上册2 一定是直角三角形吗教学设计及反思: 这是一份北师大版八年级上册2 一定是直角三角形吗教学设计及反思,共8页。教案主要包含了学生知识状况分析,学习任务分析,教法学法,教学过程设计,教学反思等内容,欢迎下载使用。
初中数学北师大版八年级上册2 一定是直角三角形吗教案: 这是一份初中数学北师大版八年级上册2 一定是直角三角形吗教案,共4页。教案主要包含了知识与技能,过程与方法,情感、态度与价值观等内容,欢迎下载使用。