北师大版第四章 因式分解2 提公因式法教学设计
展开学习目标
(一)知识认知要求
进一步让学生掌握用提公因式法分解因式的方法.
(二)能力训练要求
进一步培养学生的观察能力和类比推理能力.
(三)情感与价值观要求
通过观察能合理地进行分解因式的推导,并能清晰地阐述自己的观点.
学习重点 能观察出公因式是多项式的情况,并能合理地进行分解因式.
学习难点 准确找出公因式,并能正确进行分解因式.
学习过程
一、创设问题情境,引入新课
上节课我们学习了用提公因式法分解因式,知道了一个多项式可以分解为一个单项式与一个多项式的积的形式,那么是不是所有的多项式分解以后都是同样的结果呢?本节课我们就来揭开这个谜.
二、新课讲解
[例2]把a(x-3)+2b(x-3)分解因式.
分析:这个多项式整体而言可分为两大项,即a(x-3)与2b(x-3),每项中都含有(x-3),因此可以把(x-3)作为公因式提出来.
解:a(x-3)+2b(x-3)=(x-3)(a+2b)
从分解因式的结果来看,是不是一个单项式与一个多项式的乘积呢?
[例3]把下列各式分解因式:
(1)a(x-y)+b(y-x);
(2)6(m-n)3-12(n-m)2.
分析:虽然a(x-y)与b(y-x)看上去没有公因式,但仔细观察可以看出(x-y)与(y-x)是互为相反数,如果把其中一个提取一个“-”号,则可以出现公因式,如y-x=-(x-y).(m-n)3与(n-m)2也是如此.
解:(1)a(x-y)+b(y-x)
=a(x-y)-b(x-y)
=(x-y)(a-b)
(2)6(m-n)3-12(n-m)2
=6(m-n)3-12[-(m-n)]2
=6(m-n)3-12(m-n)2
=6(m-n)2(m-n-2).
二、做一做
请在下列各式等号右边的括号前填入“+”或“-”号,使等式成立:
(1)2-a=__________(a-2);
(2)y-x=__________(x-y);
(3)b+a=__________(a+b);
(4)(b-a)2=__________(a-b)2;
(5)-m-n=__________-(m+n);
(6)-s2+t2=__________(s2-t2).
解:(1)2-a=-(a-2);
(2)y-x=-(x-y);
(3)b+a=+(a+b);
(4)(b-a)2=+(a-b)2;
(5)-m-n=-(m+n);
(6)-s2+t2=-(s2-t2).
三、课堂练习
1.把下列各式分解因式:
(1)x(a+b)+y(a+b)
(2)3a(x-y)-(x-y)
(3)6(p+q)2-12(q+p)
(4)a(m-2)+b(2-m)
(5)2(y-x)2+3(x-y)
(6)mn(m-n)-m(n-m)2
2.补充练习:把下列各式分解因式
(1)5(x-y)3+10(y-x)2
(2)m(a-b)-n(b-a)
(3)m(m-n)(p-q)-n(n-m)(p-q)
(4)(b-a)2+a(a-b)+b(b-a)
四.课时小结
本节课进一步学习了用提公因式法分解因式,公因式可以是单项式,也可以是多项式,要认真观察多项式的结构特点,从而能准确熟练地进行多项式的分解因式.
五、课后作业 习题2.3
六.活动与探究
把(a+b-c)(a-b+c)+(b-a+c)·(b-a-c)分解因式.
解:原式=(a+b-c)(a-b+c)-(b-a+c)(a-b+c)
=(a-b+c)[(a+b-c)-(b-a+c)]
=(a-b+c)(a+b-c-b+a-c)
=(a-b+c)(2a-2c)
=2(a-b+c)(a-c)
七、学习反思:
数学八年级下册2 提公因式法教案: 这是一份数学八年级下册2 提公因式法教案,共3页。教案主要包含了创设问题情境,引入新课,新课讲解,课堂练习,学习反思等内容,欢迎下载使用。
初中3 公式法教案及反思: 这是一份初中3 公式法教案及反思,共3页。
北师大版八年级下册2 提公因式法教案: 这是一份北师大版八年级下册2 提公因式法教案,共2页。