|教案下载
搜索
    上传资料 赚现金
    【BSD版春季课程初三数学】第10讲:二次函数与一元二次方程-学生版 教案
    立即下载
    加入资料篮
    【BSD版春季课程初三数学】第10讲:二次函数与一元二次方程-学生版 教案01
    【BSD版春季课程初三数学】第10讲:二次函数与一元二次方程-学生版 教案02
    【BSD版春季课程初三数学】第10讲:二次函数与一元二次方程-学生版 教案03
    还剩12页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学北师大版九年级下册5 二次函数与一元二次方程教案

    展开
    这是一份初中数学北师大版九年级下册5 二次函数与一元二次方程教案,共15页。教案主要包含了教学建议,知识导图等内容,欢迎下载使用。










    第10讲

















    二次函数与一元二次方程


























    概述





    【教学建议】


    本节课的内容在二次函数中占有着重要的地位,也是中考中的必考内容。函数是方程和不等式的高级形式,借助图象,可以用函数的观点去统领一元二次方程和一元二次不等式,在实际问题中有着重要的应用。在教学中要让学生充分体会到处理函数问题的方法:“胸中有图,见数想图”。


    学生学习本节时可能会在以下三个方面感到困难:


    1. 二次函数与x轴的交点的横坐标就是对应一元二次方程的根;


    2. 由图象判别函数值的情况。


    3.对的不同理解方式。


    【知识导图】














    教学过程








    一、导入





    【教学建议】


    二次函数是中考数学中最重要的内容之一,对于学生来说也是最难的内容。属于中考数学的必考内容,函数是方程和不等式的高级形式,本节课主要是用函数的观点去统领对应的一元二次方程和一元二次不等式,可以全面考察学生的读图识图能力,在中考数学试卷中,也是必考题,一般不单独设题,常与其它知识融合在一起考。





    二、知识讲解








    知识点1 二次函数与一元二次方程








    二次函数y=ax2+bx+c与一元二次方程ax2+bx+c=0的关系.


    一般地,二次函数y=ax2+bx+c的图象与x轴交点的横坐标就是一元二次方程ax2+bx+c=0的根;当二次函数y=ax2+bx+c的函数值为0 时,相应的自变量的值即是一元二次方程ax2+bx+c=0的根;


    (2)若抛物线y=ax2+bx+c与x轴的两个交点坐标分别为(),,那么对应方程 ax2+bx+c=0的两个根即为 ,结合一元二次方程根与系数关系可知


    (3)二次函数与x轴的交点情况和一元二次方程根的情况的关系具体见下表:











    知识点2 二次函数与不等式





    二次函数与一元二次不等式解集的关系


    (1)从“形”的方面看二次函数y=ax2+bx+c在x轴上方的图象上的点的横坐标,即为ax2+bx+c>0的解集,在x轴下方的图象上的点的横坐标,即为ax2+bx+c>0的解集;从“数”的方面看,当二次函数y=ax2+bx+c的函数值大于0时,相应的自变量的值即为不等式ax2+bx+c>0的解集,当二次函数y=ax2+bx+c的函数值小于0时,相应的自变量的值即为不等式ax2+bx+c<0的解集。


    (2)二次函数与一元二次不等式的关系具体见下表:











    知识点3 二次函数与方程和不等式综合





    具体知识点,请参照上面的知识点1和知识点2





    三、例题精析








    例题1





    【题干】当a<0时,方ax2+bx+c=0无实数根,则二次函数y=ax2+bx+c的图象一定在( )


    A. x轴上方 B. x轴上方C. y轴右侧 D. y轴左侧





    例题2





    【题干】已知二次函数y=x2+2x+m的图象C1与x轴有且只有一个公共点。


    (1)求C1的顶点坐标;


    (2)将C1向下平移若干个单位后,得抛物线C2,如果C2与x轴的一个交点为A(−3,0),求C2的函数关系式,并求C2与x轴的另一个交点坐标;


    (3)若P(n,y1),Q(2,y2)是C1上的两点,且y1>y2,求实数n的取值范围。











    例题3





    【题干】二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:





    (1)方程ax2+bx+c=0的两个根是 ;


    (2)不等式ax2+bx+c>0的解集是 ;


    (3)y随x的增大而减小的自变量x的取值范围是 。


    (4)若方程ax2+bx+c=k有两个不相等的实数根,则k的取值范围是。








    例题4





    【题干】在平面直角坐标系xOy中,已知抛物线y=x2-2(k-1)x+k2-k(k为常数).


    (1)若抛物线经过点(1,k2),求k的值.


    (2)若抛物线经过点(2k,y1)和点(2,y2),且y1>y2,求k的取值范围.


    (3)若将抛物线向右平移1个单位长度得到新抛物线,当1≤x≤2时,新抛物线对应的函数有最小值-,求k的值.








    四 、课堂运用





    【教学建议】


    在讲解过程中,教师可以以中考真题入手,重点放在用二次函数的观点去看对应的一元二次方程和一元二次不等式,教师在教学中,先把例题讲解清晰,帮助学生形成相应的知识结构图;再给学生做针对性的练习,抓住它们三者之间的内在逻辑联系。





    基础





    1.一元二次方程ax2+bx+c=h的根就是二次函数y=ax2+bx+c的图像与直线 交点的 坐标。





    2.在平原上,一门迫击炮发射的一发炮弹飞行的高度y(m)与飞行时间x(s)的关系满足y=−x2+1Ox.


    (1)经过多长时间,炮弹达到它的最高点?最高点的高度是多少?


    (2)经过多长时间,炮弹落在地上爆炸?








    3.“如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根。”请根据你对这句话的理解,解决下面问题:若m、n(m

    A. m







    巩固





    1.当m取何值时,抛物线y=x2与直线y=x+m


    (1)有公共点;


    (2)没有公共点.








    2.已知关于x的方程x2−(2k−3)x+k2+1=0有两个不相等的实数根x1、x2.


    (1)求k的取值范围;


    (2)试说明x1<0,x2<0;


    (3)若抛物线y=x2−(2k−3)x+k2+1与x轴交于A. B两点,点A、点B到原点的距离分别为OA、OB,且OA+OB=2OA⋅OB−3,求k的值。





    3.平面直角坐标系xOy中,二次函数y=x2-2mx+m2+2m+2的图象与x轴有两个交点.


    (1)当m=-2时,求二次函数的图象与x轴交点的坐标;


    (2)过点P(0,m-1)作直线l⊥y轴,二次函数图像的顶点A在直线l与x轴之间(不包含点A在直线l上),求m的范围;


    (3)在(2)的条件下,设二次函数图像的对称轴与直线l相交于点B,求△ABO的面积最大时m的值.











    拔高





    1.求二次函数y=2x2+2mx+m2-m-1的图象与x轴两交点间的最大距离.








    2.某电子厂商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y=−2x+100.(利润=售价−制造成本)


    (1)写出每月的利润z(万元)与销售单价x(元)之间的函数关系式;


    (2)当销售单价为多少元时,厂商每月能获得350万元的利润?当销售单价为多少元时,厂商每月能获得最大利润?最大利润是多少?


    (3)根据相关部门规定,这种电子产品的销售单价不能高于32元,如果厂商要获得每月不低于350万元的利润,那么制造出这种产品每月的最低制造成本需要多少万元?








    3.阅读材料,解答问题。利用图象法解一元二次不等式:x2−2x−3>0.


    解:设y=x2−2x−3,则y是x的二次函数.∵a=1>0,∴抛物线开口向上。


    又∵当y=0时,x2−2x−3=0,解得x1=−1,x2=3.


    ∴由此得抛物线y=x2−2x−3的大致图象如图所示。


    观察函数图象可知:当x<−1或x>3时,y>0.


    ∴x2−2x−3>0的解集是:x<−1或x>3.





    (1)观察图象,直接写出一元二次不等式:x2−2x−3<0的解集是______;


    (2)仿照上例,用图象法解一元二次不等式:x2−1>0.(大致图象画在答题卡上)














    课堂小结





    回忆以下三个方面的知识:


    1.二次函数与一元二次方程


    2.二次函数与不等式


    3.二次函数与方程和不等式综合











    拓展延伸








    基础





    1. 已知二次函数y=ax2+bx+c(a≠0)的顶点坐标(−1,−3.2)及部分图象(如图),由图象可知关于x的一元二次方程ax2+bx+c=0的两个根分别是x1=1.3和x2=( )





    A. −1.3B. −2.3C. −0.3D. −3.3








    2. 如图,以(1,-4)为顶点的二次函数y=ax2+bx+c的图象与x轴负半轴交于A点,则一元二次方程ax2+bx+c=0的正数解的范围是( )











    3.已知二次函数y=2(x-1)(x-m-3)(m为常数).


    (1)求证:不论m为何值,该函数的图像与x轴总有公共点;


    (2)当m取什么值时,该函数的图像与y轴的交点在x轴的上方?








    巩固





    已知二次函数y=x2 +2x+m 的图象C1与x轴有且只有一个公共点。


    求C1 的顶点坐标;


    (2)将C1向下平移若干个单位后,得抛物线C2,如果C2与x轴的一个交点为A(-3,0),求C2 函数关系式,并求C 2与x轴的另一个交点的坐标.





    2.已知二次函数y=ax2+bx+c的图象如图所示,对称轴为直线x=1,则下列结论正确的是( )





    A. ac>0 B.方程ax2+bx+c=0的两根是x1=-1,x2=3


    C. 2a-b=0 D.当y>0时,y随x的增大而减小.








    3.阅读材料,解答问题.


    利用图象法解一元二次不等式:x2+2x-3<0.


    解:设y=x2+2x-3,则y是x的二次函数.∵a=1>0,∴抛物线开口向上.


    又∵当y=0时,x2+2x-3=0,解得x1=1,x2=-3.


    ∴由此得抛物线y=x2+2x-3的大致图象如图所示.


    观察函数图象可知:当-3<x<1时,y<0.


    ∴x2+2x-3<0的解集是:-3<x<1时.


    (1)观察图象,直接写出一元二次不等式:x2+2x-3>0的解集


    (2)仿照上例,用图象法解一元二次不等式:-2x2-4x+6>0.


    (3)不等式2x2-4x+6<0有解吗?若有,求出其解集;若没有请结合图象说明理由.














    拔高





    1.已知抛物线与轴交于点,与轴交于,两点,顶点的纵坐标为,若,是方程的两根,且.


    (1)求,两点坐标;


    (2)求抛物线表达式及点坐标;


    (3)在抛物线上是否存在着点,使△面积等于四边形面积的2倍,若存在,求出点坐标;若不存在,请说明理由.











    2.如图,若二次函数(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(-1,0)则①二次函数的最大值为a+b+c;②a-b+c<0;③b²-4ac<0;④当y>0时,-1<x<3.其中正确的个数是( )


    A.1 B.2 C.3 D.4


    x=1








    3.如图,抛物线与x轴的交于点A、B,把抛物线在x轴即其下方的部分记作C1,将C1向左平移得C2,C2与x轴的交于点B、D.若直线与C1、C2共有三个不同的交点,则m的取值范围是





    A.B.C.D.





    适用学科
    初中数学
    适用年级
    初中三年级
    适用区域
    北师版区域
    课时时长(分钟)
    120
    知识点
    二次函数与一元二次方程


    二次函数与不等式


    二次函数与方程和不等式综合
    教学目标
    1.掌握二次函数与一元二次方程的联系


    2.掌握二次函数与不等式的联系


    3.掌握利用函数图像解决实际问题
    教学重点
    能熟练掌握二次函数与一元二次方程的联系
    教学难点
    能熟练掌握二次函数与一元二次方程的联系
    二次函数y=ax2+bx+c与x轴交点情况
    a>0
    两个交点
    一个交点
    没有交点
    a<0
    两个交点
    一个交点
    没有交点
    的值
    一元二次方程ax2+


    bx+c=0根的情况
    有两个不相等的实根
    有两个相等的实根
    没有实根
    抛物线的图象
    时x的取值范围

    全体实数
    时x的取值范围
    无解
    无解
    抛物线的图象
    判别式b2-4ac
    b2-4ac>0
    b2-4ac=0
    b2-4ac<0
    时x的取值范围
    无解
    无解
    时x的取值范围

    全体实数
    A.2<x<3
    B.3<x<4
    C.4<x<5
    D.5<x<6
    相关教案

    数学北师大版9 弧长及扇形的面积教学设计: 这是一份数学北师大版9 弧长及扇形的面积教学设计,共12页。教案主要包含了教学建议,知识导图等内容,欢迎下载使用。

    北师大版九年级下册第三章 圆2 圆的对称性教案设计: 这是一份北师大版九年级下册第三章 圆2 圆的对称性教案设计,共14页。教案主要包含了教学建议,知识导图等内容,欢迎下载使用。

    数学北师大版1 二次函数教案: 这是一份数学北师大版1 二次函数教案,共19页。教案主要包含了教学建议,知识导图等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        【BSD版春季课程初三数学】第10讲:二次函数与一元二次方程-学生版 教案
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map