初中数学人教版八年级上册第十二章 全等三角形综合与测试练习题
展开1.如图(1),在平面直角坐标系中,AB⊥x轴于B,AC⊥y轴于C,点C(0,m),A(n,m),且(m﹣4)2+n2﹣8n=﹣16,过C点作∠ECF分别交线段AB、OB于E、F两点.
(1)求A点的坐标;
(2)若OF+BE=AB,求证:CF=CE;
(3)如图(2),若∠ECF=45°,给出两个结论:OF+AE﹣EF的值不变;OF+AE+EF的值不变,其中有且只有一个结论正确,请你判断出正确的结论,并加以证明和求出其值.
2.如图1,我们定义:在四边形ABCD中,若AD=BC,且∠ADB+∠BCA=180°,则把四边形ABCD叫做互补等对边四边形.
(1)如图2,在等腰△ABE中,AE=BE,四边形ABCD是互补等对边四边形,求证:∠ABD=∠BAC=∠AEB.
(2)如图3,在非等腰△ABE中,若四边形ABCD仍是互补等对边四边形,试问∠ABD=∠BAC=∠AEB是否仍然成立?若成立,请加以证明;若不成立,请说明理由.
43.如图①A、E、F、C在一条直线上,AE=CF,过E、F分别作DE⊥AC,B F⊥AC,若AB=CD.
(1)图①中有 对全等三角形,并把它们写出来.
(2)求证:G是BD的中点.
(3)若将△ABF的边AF沿GA方向移动变为图②时,其余条件不变,第(2)题中的结论是否成立?如果成立,请予证明.
4.八年级一班数学兴趣小组在一次活动中进行了探究试验活动,请你和他们一起活动吧.
【探究与发现】
(1)如图1,AD是△ABC的中线,延长AD至点E,使ED=AD,连接BE,写出图中全等的两个三角形
【理解与应用】
(2)填空:如图2,EP是△DEF的中线,若EF=5,DE=3,设EP=x,则x的取值范围是 .
(3)已知:如图3,AD是△ABC的中线,∠BAC=∠ACB,点Q在BC的延长线上,QC=BC,求证:AQ=2AD.
5.如图,已知AB∥CD,点E在BC上且BE=CD,AB=CE,EF平分∠AED.
(1)求证:△ABE≌△ECD;
(2)猜测EF与AD的位置关系,并说明理由;
(3)若DF=AE,请判断△AED的形状,并说明理由.
6.如图1,已知A(0,a),B(b,0),且a、b满足a2﹣4a+20=8b﹣b2.
(1)求A、B两点的坐标;
(2)如图2,连接AB,若D(0,﹣6),DE⊥AB于点E,B、C关于y轴对称,M是线段DE上的一点,且DM=AB,连接AM,试判断线段AC与AM之间的位置和数量关系,并证明你的结论;
(3)如图3,在(2)的条件下,若N是线段DM上的一个动点,P是MA延长线上的一点,且DN=AP,连接PN交y轴于点Q,过点N作NH⊥y轴于点H,当N点在线段DM上运动时,△MQH的面积是否为定值?若是,请求出这个值;若不是,请说明理由.
7.在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线,DE⊥AB于E.
(1)如图1,连接CE,求证:△BCE是等边三角形;
(2)如图2,点M为CE上一点,连结BM,作等边△BMN,连接EN,求证:EN∥BC;
(3)如图3,点P为线段AD上一点,连结BP,作∠BPQ=60°,PQ交DE延长线于Q,探究线段PD,DQ与AD之间的数量关系,并证明.
8.如图,在△ABC中,AB=AC,D、A、E在直线m上,∠ADB=∠AEC=∠BAC.
(1)求证:DE=DB+EC;
(2)若∠BAC=120°,AF平分∠BAC,且AF=AB,连接FD、FE,请判断△DEF的形状,并写出证明过程.
9.教学实验:画∠AOB的平分线OC.
(1)将一块最够大的三角尺的直角顶点落在OC的任意一点P上,使三角尺的两条直角边分别于OA,OB交于E,F(如图①).度量PE、PF的长度,PE PF(填>,<,=);
(2)将三角尺绕点P旋转(如图②):
①PE与PF相等吗?若相等请进行证明,若不相等请说明理由;
②若OP=,请直接写出四边形OEPF的面积: .
10.(1)如图(1)在△ABC中,∠ACB=2∠B,∠C=90°,AD为∠BAC的平分线交BC于D,求证:AB=AC+CD.(提示:在AB上截取AE=AC,连接DE)
(2)如图(2)当∠C≠90°时,其他条件不变,线段AB、AC、CD又有怎样的数量关系,直接写出结果,不需要证明.
(3)如图(3)当∠ACB≠90°,AD为△ABC的外角∠CAF的平分线,交BC的延长线于点D,则线段AB、AC、CD又有怎样的数量关系?写出你的猜想,并加以证明.
参考答案
1.解:(1)(m﹣4)2+n2﹣8n=﹣16,
即(m﹣4)2+(n﹣4)2=0,
则m﹣4=0,n﹣4=0,
解得:m=4,n=4.
则A的坐标是(4,4);
(2)∵AB⊥x轴,AC⊥y轴,A(4,4),
∴AB=AC=OC=OB,∠ACO=∠COB=∠ABO=90°,
又∵四边形的内角和是360°,
∴∠A=90°,
∵OF+BE=AB=BE+AE,
∴AE=OF,
∴在△COF和△CAE中,,
∴△COF≌△CAE,得
∴CF=CE;
(3)结论正确,值为0.
证明:在x轴负半轴上取点H,使OH=AE,
∵在△ACE和△OCH中,,
∴△ACE≌△OCH,
∴∠1=∠2,CH=CE,
又∵∠EOF=45°,
∴∠HCF=45°,
∴在△HCF和△ECF中,,
∴△HCF≌△ECF,
∴HF=EF,
∴OF+AE﹣EF=0.
2.解:(1)∵AE=BE,
∴∠EAB=∠EBA,
∵四边形ABCD是互补等对边四边形,
∴AD=BC,
在△ABD和△BAC中,
,
∴△ABD≌△BAC(SAS),
∴∠ADB=∠BCA,
又∵∠ADB+∠BCA=180°,
∴∠ADB=∠BCA=90°,
在△ABE中,∵∠EAB=∠EBA==90°﹣∠AEB,
∴∠ABD=90°﹣∠EAB=90°﹣(90°﹣∠AEB)=∠AEB,
同理:∠BAC=∠AEB,
∴∠ABD=∠BAC=∠AEB;
(2)仍然成立;
理由如下:如图③所示:过点A、B分别作BD的延长线与AC的垂线,垂足分别为G、F,
∵四边形ABCD是互补等对边四边形,
∴AD=BC,∠ADB+∠BCA=180°,
又∠ADB+ADG=180°,
∴∠BCA=∠ADC,
又∵AG⊥BD,BF⊥AC,
∴∠AGD=∠BFC=90°,
在△AGD和△BFC中,
∴△AGD≌△BFC,
∴AG=BF,
在△ABG和△BAF中,
∴△ABG≌△BAF,
∴∠ABD=∠BAC,
∵∠ADB+∠BCA=180°,
∴∠EDB+∠ECA=180°,
∴∠AEB+∠DHC=180°,
∵∠DHC+∠BHC=180°,
∴∠AEB=∠BHC.
∵∠BHC=∠BAC+∠ABD,∠ABD=∠BAC,
∴∠ABD=∠BAC=∠AEB.
3.解:(1)图①中全等三角形有:△ABF≌△CDE,△ABG≌△CDG,△BFG≌△DEG.
故答案是:3;
(2)∵AE=CF,
∴AF=CE,
∴在直角△ABF和直角△CDE中,,
∴△ABF≌△CDE,
∴BF=DE,
在△DEG和△BFG中,,
∴△DEG≌△BFG,
∴BG=DG,即G是BD的中点;
(3)结论仍成立.
理由是:)∵AE=CF,
∴AF=CE,
在直角△ABF和直角△CDE中,,
∴△ABF≌△CDE,
∴BF=DE,
在△DEG和△BFG中,,
∴△DEG≌△BFG,
∴BG=DG,即G是BD的中点.
4.(1)证明:在△ADC与△EDB中,
,
∴△ADC≌△EDB;
故答案为:△ADC≌△EDB;
(2)解:如图2,延长EP至点Q,使PQ=PE,连接FQ,
在△PDE与△PQF中,
,
∴△PEP≌△QFP,
∴FQ=DE=3,
在△EFQ中,EF﹣FQ<QE<EF+FQ,
即5﹣3<2x<5+3,
∴x的取值范围是1<x<4;
故答案为:1<x<4;
(3)证明:如图3,延长AD到M,使MD=AD,连接BM,
∴AM=2AD,
∵AD是△ABC的中线,
∴BD=CD,
在△BMD与△CAD中,
,
∴△BMD≌△CAD,
∴BM=CA,∠M=∠CAD,
∴∠BAC=∠BAM+∠CAD=∠BAM+∠M,
∵∠ACB=∠Q+∠CAQ,AB=BC,
∵∠ACQ=180°﹣(∠Q+∠CAQ),∠MBA=180°﹣(∠BAM+∠M),
∴∠ACQ=∠MBA,
∵QC=BC,
∴QC=AB,
在△ACQ与△MBA中,
,
∴△ACQ≌△MBA,
∴AQ=AM=2AD.
5.(1)证明:∵AB∥CD,
∴∠B=∠C,
在△ABE与△ECD中,,
∴△ABE≌△ECD;
(2)EF⊥AD,
理由:∵△ABE≌△ECD,
∴AE=DE,
∵EF平分∠AED,
∴EF⊥AD;
(3)△AED是等边三角形,
∵AE=DE,
∵EF平分∠AED,
∴DF=AD,
∵DF=AE,
∴AD=AE=DE,
∴△AED是等边三角形.
6.解:(1)∵a2﹣4a+20=8b﹣b2,
∴(a﹣2)2+(b﹣4)2=0,
∴a=2,b=4,
∴A(0,2),B(4,0);
(2)∵AD=OA+OD=8,BC=2OB=8,
∴AD=BC,
在△CAB与△AMD中,
,
∴△CAB≌△AMD,
∴AC=AM,∠ACO=∠MAD,
∵∠ACO+∠CAO=90°,
∴∠MAD+∠CAO=∠MAC=90°,
∴AC=AM,AC⊥AM;
(3)过P作PG⊥y轴于G,
在△PGA与△DHN中,
,
∴△PGA≌△DHN,
∴PG=HN,AG=HD,
∴AD=GH=8,
在△PQG与△NHQ中,
,
∴△PQG≌△NHQ,
∴QG=QH=GH=4,
∴S△MQH=×4×2=4.
7.(1)证明:∵∠ACB=90°,∠A=30°,
∴∠ABC=60°,
∵BD是△ABC的角平分线,
∴∠DBA=∠ABC=30°,
∴∠A=∠DBA,
∴AD=BD,
∵DE⊥AB,
∴AE=BE,
∴CE=AB=BE,
∴△BCE是等边三角形;
(2)证明:∵△BCE与△MNB都是等边三角形,
∴BC=BE,BM=BN,∠EBC=∠MBN=60°,
∴∠CBM=∠EBN,
在△CBM和△EBN中,
,
∴△CBM≌△EBN(SAS),
∴∠BEN=∠BCM=60°,
∴∠BEN=∠EBC,
∴EN∥BC;
(3)解:DQ=AD+DP;理由如下:
延长BD至F,使DF=PD,连接PF,如图所示:
∵∠PDF=∠BDC=∠A+∠DBA=30°+30°=60°,
∴△PDF为等边三角形,
∴PF=PD=DF,∠F=60°,
∵∠PDQ=90°﹣∠A=60°,
∴∠F=∠PDQ=60°,
∴∠BDQ=180°﹣∠BDC﹣∠PDQ=60°,
∴∠BPQ=∠BDQ=60°,
∴∠Q=∠PBF,
在△PFB和△PDQ中,
,
∴△PFB≌△PDQ,
∴DQ=BF=BD+DF=BD+DP,
∵∠A=∠ABD,
∴AD=BD,
∴DQ=AD+DP.
8.(1)证明:∵∠ADB=∠AEC=∠BAC,
∴∠ADB+∠ABD+∠BAD=∠BAD+∠BAC+∠EAC=180°,
∴∠ABD=∠EAC,
在△ABD与△ACE中,
,
∴△ABD≌△AEC,
∴BD=AE,
∵DE=AD+AE,
∴DE=DB+EC.
(2)结论:△DEF为等边三角形
理由:连接BF,CF.
∵AF平分∠BAC,∠BAC=120°,
∴∠FAB=∠FAC=60°,
∵FA=AB=AC,
∴△ABF和△ACF均为等边三角形
∴BF=AF=AB=AC=CF,∠BAF=∠CAF=∠ABF=60°,
∴∠BDA=∠AEC=∠BAC=120°,
∴∠DBA+∠DAB=∠CAE+∠DAB=60°,
∴∠DBA=∠CAE.
在△BAD和△ACE中,
,
∴△ADB≌△CEA(AAS),
∴BD=AE,∠DBA=∠CAE.
∵∠ABF=∠CAF=60°,
∴∠DBA+∠ABF=∠CAE+∠CAF,
∴∠DBF=∠FAE.
在△BDF和△AEF中,
,
∴△DBF≌△EAF(SAS),
∴DF=EF,∠BFD=∠AFE,
∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,
∴△DEF为等边三角形.
9.(1)解:PE=PF;
故答案为:=;
(2)解:①PE=PF;理由如下:
把三角尺绕点P顺时针旋转,使三角尺的两条直角边分别与OA,OB垂直于M、N,如图所示:
则∠PME=∠PNF=90°,四边形OMPN是矩形
∵OP平分∠AOB,
∴PM=PN,
∴四边形OMPN是正方形,
∵∠AOB=∠PME=∠PNF=90°,
∴∠MPN=90°,
∵∠EPF=90°,
∴∠MPE=∠FPN,
在△PEM和△PFN中
∴△PEM≌△PFN(ASA),
∴PE=PF.
②由①得:四边形OMPN是正方形,△PEM≌△PFN,
∴OM=ON=OP=1,四边形OEPF的面积=正方形OMPN的面积=OM2=1;
故答案为:1.
10.解:(1)如图1所示,在AB上截取AE=AC,连接DE,
∵AD平分∠BAC,
∴∠1=∠2.
在△ACD和△AED中,
,
∴△ACD≌△AED(SAS).
∴∠AED=∠C=90,CD=ED,
又∵∠ACB=2∠B,∠C=90°,
∴∠B=45°.
∴∠EDB=∠B=45°.
∴DE=BE,
∴CD=BE.
∵AB=AE+BE,
∴AB=AC+CD.
(2)证明:在AB取一点E使AC=AE,
在△ACD和△AED中,
,
∴△ACD≌△AED,
∴∠C=∠AED,CD=DE,
又∵∠C=2∠B,
∴∠AED=2∠B,
∵∠AED是△EDC的外角,
∴∠EDB=∠B,
∴ED=EB,
∴CD=EB,
∴AB=AC+CD;
(3)AB=CD﹣AC
证明:在BA的延长线AF上取一点E,使得AE=AC,连接DE,
在△ACD和△AED中,
,
∴△ACD≌△AED(SAS),
∴∠ACD=∠AED,CD=DE,
∴∠ACB=∠FED,
又∵∠ACB=2∠B,
∴∠FED=2∠B,
又∵∠FED=∠B+∠EDB,
∴∠EDB=∠B,
∴DE=BE,
∴BE=CD,
∴AB=CD﹣AC.
初中数学人教版八年级上册12.1 全等三角形同步训练题: 这是一份初中数学人教版八年级上册12.1 全等三角形同步训练题,文件包含八年级数学上册必考点04全等三角形的性质与判定-题型·技巧培优系列2022-2023学年八年级数学上册精选专题人教版原卷版docx、八年级数学上册必考点04全等三角形的性质与判定-题型·技巧培优系列2022-2023学年八年级数学上册精选专题人教版解析版docx等2份试卷配套教学资源,其中试卷共90页, 欢迎下载使用。
人教版数学九年级上册专项培优练习十五《切线的性质与判定》(含答案): 这是一份人教版数学九年级上册专项培优练习十五《切线的性质与判定》(含答案),共13页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
人教版数学八年级上册专项培优练习二《全等三角形性质与判定》(含答案): 这是一份人教版数学八年级上册专项培优练习二《全等三角形性质与判定》(含答案),共14页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。