终身会员
搜索
    上传资料 赚现金
    2020届全国各地高考试题分类汇编03数列不等式.docx
    立即下载
    加入资料篮
    2020届全国各地高考试题分类汇编03数列不等式.docx01
    2020届全国各地高考试题分类汇编03数列不等式.docx02
    2020届全国各地高考试题分类汇编03数列不等式.docx03
    还剩19页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2020届全国各地高考试题分类汇编03数列不等式.docx

    展开
    07 数列
    1.(2020•北京卷)在等差数列中,,.记,则数列( ).
    A. 有最大项,有最小项 B. 有最大项,无最小项
    C. 无最大项,有最小项 D. 无最大项,无最小项
    【答案】B
    【解析】首先求得数列的通项公式,然后结合数列中各个项数的符号和大小即可确定数列中是否存在最大项和最小项.
    【详解】由题意可知,等差数列的公差,
    则其通项公式为:,
    注意到,且由可知,
    由可知数列不存在最小项,
    由于,
    故数列中的正项只有有限项:,.故数列中存在最大项,且最大项为.
    故选:B.
    【点睛】本题主要考查等差数列通项公式,等差数列中项的符号问题,分类讨论的数学思想等知识,属于中等题.
    2.(2020•北京卷)已知是无穷数列.给出两个性质:
    ①对于中任意两项,在中都存在一项,使;
    ②对于中任意项,在中都存在两项.使得.
    (Ⅰ)若,判断数列是否满足性质①,说明理由;
    (Ⅱ)若,判断数列是否同时满足性质①和性质②,说明理由;
    (Ⅲ)若是递增数列,且同时满足性质①和性质②,证明:为等比数列.
    【答案】(Ⅰ)详见解析;(Ⅱ)详解解析;(Ⅲ)证明详见解析.
    【解析】(Ⅰ)根据定义验证,即可判断;
    (Ⅱ)根据定义逐一验证,即可判断;
    (Ⅲ)解法一:首先,证明数列中的项数同号,然后证明,最后,用数学归纳法证明数列为等比数列即可.
    解法二:首先假设数列中的项数均为正数,然后证得成等比数列,之后证得成等比数列,同理即可证得数列为等比数列,从而命题得证.
    【详解】(Ⅰ)不具有性质①;
    (Ⅱ)具有性质①;
    具有性质②;
    (Ⅲ)【解法一】
    首先,证明数列中的项数同号,不妨设恒为正数:
    显然,假设数列中存在负项,设,
    第一种情况:若,即,
    由①可知:存在,满足,存在,满足,
    由可知,从而,与数列的单调性矛盾,假设不成立.
    第二种情况:若,由①知存在实数,满足,由的定义可知:,
    另一方面,,由数列单调性可知:,
    这与的定义矛盾,假设不成立.同理可证得数列中的项数恒为负数.
    综上可得,数列中的项数同号.其次,证明:
    利用性质②:取,此时,
    由数列的单调性可知,而,故,此时必有,即,
    最后,用数学归纳法证明数列为等比数列:
    假设数列的前项成等比数列,不妨设,
    其中,(情况类似)
    由①可得:存在整数,满足,且 (*)
    由②得:存在,满足:,由数列的单调性可知:,
    由可得: (**)
    由(**)和(*)式可得:,
    结合数列的单调性有:,注意到均为整数,故,
    代入(**)式,从而.总上可得,数列的通项公式为:.
    即数列为等比数列.
    【解法二】假设数列中的项数均为正数:
    首先利用性质②:取,此时,由数列的单调性可知,
    而,故,此时必有,即,
    即成等比数列,不妨设,
    然后利用性质①:取,则,
    即数列中必然存在一项的值为,下面我们来证明,
    否则,由数列的单调性可知,在性质②中,取,则,从而,
    与前面类似的可知则存在,满足,
    若,则:,与假设矛盾;
    若,则:,与假设矛盾;
    若,则:,与数列的单调性矛盾;
    即不存在满足题意的正整数,可见不成立,从而,
    同理可得:,从而数列为等比数列,同理,当数列中的项数均为负数时亦可证得数列为等比数列.由推理过程易知数列中的项要么恒正要么恒负,不会同时出现正数和负数.
    从而题中的结论得证,数列为等比数列.
    【点睛】本题主要考查数列的综合运用,等比数列的证明,数列性质的应用,数学归纳法与推理方法、不等式的性质的综合运用等知识,意在考查学生的转化能力和推理能力.
    3.(2020•全国1卷)设是公比不为1的等比数列,为,的等差中项.
    (1)求的公比;
    (2)若,求数列的前项和.
    【答案】(1);(2).
    【解析】(1)由已知结合等差中项关系,建立公比的方程,求解即可得出结论;
    (2)由(1)结合条件得出的通项,根据的通项公式特征,用错位相减法,即可求出结论.
    【详解】(1)设的公比为,为的等差中项,
    ,;
    (2)设前项和为,,
    ,①
    ,②
    ①②得,
    ,.
    【点睛】本题考查等比数列通项公式基本量的计算、等差中项的性质,以及错位相减法求和,考查计算求解能力,属于基础题.
    4.(2020•全国2卷)北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)( )

    A. 3699块 B. 3474块 C. 3402块 D. 3339块
    【答案】C
    【解析】第n环天石心块数为,第一层共有n环,则是以9为首项,9为公差的等差数列,
    设为的前n项和,由题意可得,解方程即可得到n,进一步得到.
    【详解】设第n环天石心块数为,第一层共有n环,
    则是以9为首项,9为公差的等差数列,,
    设为的前n项和,则第一层、第二层、第三层的块数分
    别为,因为下层比中层多729块,所以,

    即,解得,所以.
    故选:C
    【点晴】本题主要考查等差数列前n项和有关的计算问题,考查学生数学运算能力,是一道容易题.
    5.(2020•全国2卷)数列中,,,若,则( )
    A. 2 B. 3 C. 4 D. 5
    【答案】C
    【解析】取,可得出数列是等比数列,求得数列的通项公式,利用等比数列求和公式可得出关于的等式,由可求得的值.
    【详解】在等式中,令,可得,,
    所以,数列是以为首项,以为公比的等比数列,则,

    ,则,解得.故选:C.
    【点睛】本题考查利用等比数列求和求参数的值,解答的关键就是求出数列的通项公式,考查计算能力,属于中等题.
    6.(2020•全国2卷)0-1周期序列在通信技术中有着重要应用.若序列满足,且存在正整数,使得成立,则称其为0-1周期序列,并称满足的最小正整数为这个序列的周期.对于周期为的0-1序列,是描述其性质的重要指标,下列周期为5的0-1序列中,满足的序列是( )
    A. B. C. D.
    【答案】C
    【解析】根据新定义,逐一检验即可
    【详解】由知,序列的周期为m,由已知,,
    ,对于选项A,

    ,不满足;
    对于选项B,
    ,不满足;
    对于选项D,
    ,不满足;
    故选:C
    【点晴】本题考查数列的新定义问题,涉及到周期数列,考查学生对新定义的理解能力以及数学运算能力,是一道中档题.
    7.(2020•全国3卷)设数列{an}满足a1=3,.
    (1)计算a2,a3,猜想{an}的通项公式并加以证明;
    (2)求数列{2nan}的前n项和Sn.
    【答案】(1),,,证明见解析;(2).
    【解析】(1)利用递推公式得出,猜想得出的通项公式,利用数学归纳法证明即可;
    (2)由错位相减法求解即可.
    【详解】(1)由题意可得,,
    由数列的前三项可猜想数列是以为首项,2为公差的等差数列,即,
    证明如下:当时,成立;
    假设时,成立.
    那么时,也成立.
    则对任意的,都有成立;
    (2)由(1)可知,
    ,①
    ,②
    由①②得:

    即.
    【点睛】本题主要考查了求等差数列的通项公式以及利用错位相减法求数列的和,属于中档题.
    8.(2020•江苏卷)设{an}是公差为d的等差数列,{bn}是公比为q的等比数列.已知数列{an+bn}的前n项和,则d+q的值是_______.
    【答案】
    【解析】结合等差数列和等比数列前项和公式的特点,分别求得的公差和公比,由此求得.
    【详解】设等差数列的公差为,等比数列的公比为,根据题意.
    等差数列的前项和公式为,
    等比数列的前项和公式为,
    依题意,即,
    通过对比系数可知,故.故答案为:
    【点睛】本小题主要考查等差数列和等比数列的前项和公式,属于中档题.
    9.(2020•江苏卷)已知数列的首项a1=1,前n项和为Sn.设λ与k是常数,若对一切正整数n,均有成立,则称此数列为“λ–k”数列.
    (1)若等差数列是“λ–1”数列,求λ的值;
    (2)若数列是“”数列,且an>0,求数列的通项公式;
    (3)对于给定的λ,是否存在三个不同的数列为“λ–3”数列,且an≥0?若存在,求λ的取值范围;若不存在,说明理由,
    【答案】(1)1
    (2)
    (3)
    【解析】(1)根据定义得,再根据和项与通项关系化简得,最后根据数列不为零数列得结果;
    (2)根据定义得,根据平方差公式化简得,求得,即得;
    (3)根据定义得,利用立方差公式化简得两个方程,再根据方程解的个数确定参数满足的条件,解得结果
    【详解】(1)
    (2),


    ,,

    (3)假设存在三个不同的数列为数列.



    ∵对于给定的,存在三个不同的数列为数列,且
    或有两个不等的正根.
    可转化为,不妨设,则有两个不等正根,设.
    ① 当时,,即,此时,,满足题意.
    ② 当时,,即,此时,,此情况有两个不等负根,不满足题意舍去.
    综上,
    【点睛】本题考查数列新定义、由和项求通项、一元二次方程实根分步,考查综合分析求解能力,属难题.
    10.(2020•新全国1山东)将数列{2n–1}与{3n–2}的公共项从小到大排列得到数列{an},则{an}的前n项和为________.
    【答案】
    【解析】首先判断出数列与项的特征,从而判断出两个数列公共项所构成新数列的首项以及公差,利用等差数列的求和公式求得结果.
    【详解】因为数列是以1为首项,以2为公差的等差数列,
    数列是以1首项,以3为公差的等差数列,
    所以这两个数列的公共项所构成的新数列是以1为首项,以6为公差的等差数列,
    所以的前项和为,故答案为:.
    【点睛】该题考查的是有关数列的问题,涉及到的知识点有两个等差数列的公共项构成新数列的特征,等差数列求和公式,属于简单题目.
    11.(2020•新全国1山东)已知公比大于的等比数列满足.
    (1)求的通项公式;
    (2)记为在区间中的项的个数,求数列的前项和.
    【答案】(1);(2).
    【解析】(1)利用基本元的思想,将已知条件转化为的形式,求解出,由此求得数列的通项公式.
    (2)通过分析数列的规律,由此求得数列的前项和.
    【详解】(1)由于数列是公比大于的等比数列,设首项为,公比为,依题意有,解得解得,或(舍),所以,所以数列的通项公式为.
    (2)由于,所以
    对应的区间为:,则;
    对应的区间分别为:,则,即有个;
    对应的区间分别为:,则,即有个;
    对应的区间分别为:,则,即有个;
    对应的区间分别为:,则,即有个;
    对应的区间分别为:,则,即有个;
    对应的区间分别为:,则,即有个.
    所以.
    【点睛】本小题主要考查等比数列基本量的计算,考查分析思考与解决问的能力,属于中档题.

    12.(2020•天津卷).已知为等差数列,为等比数列,.
    (Ⅰ)求和的通项公式;
    (Ⅱ)记的前项和为,求证:;
    (Ⅲ)对任意的正整数,设求数列的前项和.
    【答案】(Ⅰ),;(Ⅱ)证明见解析;(Ⅲ).
    【解析】(Ⅰ)由题意分别求得数列的公差、公比,然后利用等差、等比数列的通项公式得到结果;
    (Ⅱ)利用(Ⅰ)的结论首先求得数列前n项和,然后利用作差法证明即可;
    (Ⅲ)分类讨论n为奇数和偶数时数列的通项公式,然后分别利用指数型裂项求和和错位相减求和计算和的值,据此进一步计算数列的前2n项和即可.
    【详解】(Ⅰ)设等差数列的公差为,等比数列的公比为q.由,,可得d=1.
    从而的通项公式为.由,又q≠0,可得,解得q=2,
    从而的通项公式为.
    (Ⅱ)证明:由(Ⅰ)可得,
    故,,
    从而,所以.
    (Ⅲ)当n奇数时,,
    当n为偶数时,,
    对任意的正整数n,有,
    和 ①
    由①得 ②
    由①②得,
    由于,
    从而得:.
    因此,.所以,数列的前2n项和为.
    【点睛】本题主要考查数列通项公式的求解,分组求和法,指数型裂项求和,错位相减求和等,属于中等题.
    13.(2020•浙江卷)已知数列{an}满足,则S3=________.
    【答案】
    【解析】根据通项公式可求出数列的前三项,即可求出.
    【详解】因为,所以.即.
    故答案为:.
    【点睛】本题主要考查利用数列的通项公式写出数列中的项并求和,属于容易题.
    14.(2020•浙江卷)已知数列{an},{bn},{cn}中,.
    (Ⅰ)若数列{bn}为等比数列,且公比,且,求q与an的通项公式;
    (Ⅱ)若数列{bn}为等差数列,且公差,证明:.
    【答案】(I);(II)证明见解析.
    【解析】(I)根据,求得,进而求得数列的通项公式,利用累加法求得数列的通项公式.
    (II)利用累乘法求得数列的表达式,结合裂项求和法证得不等式成立.
    【详解】(I)依题意,而,即,由于,所以解得,所以.
    所以,故,所以数列是首项为,公比为的等比数列,所以.
    所以().所以
    (II)依题意设,由于,
    所以,

    .
    所以
    .由于,所以,所以.
    即,.
    【点睛】本小题主要考查累加法、累乘法求数列的通项公式,考查裂项求和法,属于中档题.
    15.(2020•上海卷)已知是公差不为零的等差数列,且,则
    【答案】
    16.(2020•上海卷)有限数列,若满足,是项数,则称满足性质.
    (1) 判断数列和是否具有性质,请说明理由.
    (2) 若,公比为的等比数列,项数为10,具有性质,求的取值范围.
    (3) 若是的一个排列都具有性质,求所有满足条件的.
    【答案】(1)对于第一个数列有,
    满足题意,该数列满足性质
    对于第二个数列有不满足题意,该数列不满足性质.
    (2)由题意可得,
    两边平方得:
    整理得:
    当时,得,此时关于恒成立,
    所以等价于时,所以,
    所以或者q≥l,所以取.
    当时,得, 此时关于恒成立,
    所以等价于时,所以,
    所以,所以取。
    当时,得。
    当为奇数的时候,得, 很明显成立,
    当为偶数的时候,得,很明显不成立,
    故当时,矛盾,舍去。
    当时,得。
    当为奇数的时候,得, 很明显成立,
    当为偶数的时候,要使恒成立,
    所以等价于时,所以,
    所以或者,所以取。
    综上可得,。
    (3)设
    因为,可以取或者,可以取或者。
    如果或者取了或者,将使不满足性质
    所以,的前五项有以下组合:
    ①,,,,,
    ②,,,,,
    ③,,,,,
    ④,,,,,
    对于①,,,,与满足性质矛盾,舍去。
    对于②,,,,与满足性质矛盾,舍去。
    对于③,,,,与满足性质矛盾,舍去。
    对于④,,,,与满足性质矛盾,舍去。
    所以均不能同时使,都具有性质。
    当时,有数列:满足题意。
    当时,时有数列:满足题意。
    当时,有数列:满足题意。
    当时,有数列:满足题意。
    故满足题意的数列只有上面四种。

    08 不等式和线性规划
    1.(2020•全国1卷)若x,y满足约束条件则z=x+7y的最大值为______________.
    【答案】1
    【解析】首先画出可行域,然后结合目标函数的几何意义即可求得其最大值.
    【详解】绘制不等式组表示的平面区域如图所示,

    目标函数即:,
    其中z取得最大值时,其几何意义表示直线系在y轴上的截距最大,
    据此结合目标函数的几何意义可知目标函数在点A处取得最大值,
    联立直线方程:,可得点A的坐标为:,
    据此可知目标函数的最大值为:.故答案为:1.
    【点睛】求线性目标函数z=ax+by(ab≠0)的最值,当b>0时,直线过可行域且在y轴上截距最大时,z值最大,在y轴截距最小时,z值最小;当b<0时,直线过可行域且在y轴上截距最大时,z值最小,在y轴上截距最小时,z值最大.
    2.(2020•全国3卷)若x,y满足约束条件 ,则z=3x+2y的最大值为_________.
    【答案】7
    【解析】作出可行域,利用截距的几何意义解决.
    【详解】不等式组所表示的可行域如图
    因为,所以,易知截距越大,则越大,
    平移直线,当经过A点时截距最大,此时z最大,
    由,得,,所以.故答案为:7.

    【点晴】本题主要考查简单线性规划的应用,涉及到求线性目标函数的最大值,考查学生数形结合的思想,是一道容易题.
    3.(2020•江苏卷)已知,则的最小值是_______.
    【答案】
    【解析】根据题设条件可得,可得,利用基本不等式即可求解.
    【详解】∵,∴且
    ∴,当且仅当,即时取等号.
    ∴的最小值为.故答案为:.
    【点睛】本题考查了基本不等式在求最值中的应用.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用或时等号能否同时成立).
    4.(2020•新全国1山东)已知a>0,b>0,且a+b=1,则( )
    A. B.
    C. D.
    【答案】ABD
    【解析】根据,结合基本不等式及二次函数知识进行求解.
    【详解】对于A,,
    当且仅当时,等号成立,故A正确;
    对于B,,所以,故B正确;
    对于C,,
    当且仅当时,等号成立,故C不正确;
    对于D,因为,
    所以,当且仅当时,等号成立,故D正确;故选:ABD
    【点睛】本题主要考查不等式的性质,综合了基本不等式,指数函数及对数函数的单调性,侧重考查数学运算的核心素养.
    5.(2020•天津卷)已知,且,则的最小值为_________.
    【答案】4
    【解析】根据已知条件,将所求的式子化为,利用基本不等式即可求解.
    【详解】,,
    ,当且仅当=4时取等号,
    结合,解得,或时,等号成立.
    故答案为:
    【点睛】本题考查应用基本不等式求最值,“1”合理变换是解题的关键,属于基础题.
    6.(2020•浙江卷)若实数x,y满足约束条件,则z=2x+y的取值范围是( )
    A. B. C. D.
    【答案】B
    【解析】首先画出可行域,然后结合目标函数的几何意义确定目标函数在何处能够取得最大值和最小值从而确定目标函数的取值范围即可.
    【详解】绘制不等式组表示的平面区域如图所示,

    目标函数即:,
    其中z取得最大值时,其几何意义表示直线系在y轴上的截距最大,
    z取得最小值时,其几何意义表示直线系在y轴上的截距最小,
    据此结合目标函数的几何意义可知目标函数在点A处取得最小值,
    联立直线方程:,可得点A的坐标为:,
    据此可知目标函数的最小值为:,且目标函数没有最大值.
    故目标函数的取值范围是.故选:B
    【点睛】求线性目标函数z=ax+by(ab≠0)的最值,当b>0时,直线过可行域且在y轴上截距最大时,z值最大,在y轴截距最小时,z值最小;当b<0时,直线过可行域且在y轴上截距最大时,z值最小,在y轴上截距最小时,z值最大.
    7.(2020•上海卷)已知,则的最大值为
    【答案】-1
    8.(2020•上海卷)下列不等式恒成立的是()
    A、 B、
    C、 D、
    【答案】B


    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2020届全国各地高考试题分类汇编03数列不等式.docx
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map