初中人教版第二十三章 旋转综合与测试教案设计
展开知识要点梳理:
一、旋转变换
1、旋转的定义
把一个图形绕着某一点O转动一个角度的图形变换叫做旋转。点O叫做旋转中心,转动的角叫做旋转角,如果图形上的点经过旋转变为点,那么这两个点叫做这个旋转的对应点。
2、旋转的性质
(1)对应点到旋转中心的距离相等。(旋转中心就是各对应点所连线段的垂直平分线的交点。)
(2)对应点与旋转中心所连线段的夹角等于旋转角。
(3)旋转前、后的图形全等。
3、作旋转后的图形的一般步骤
(1)明确三个条件:旋转中心,旋转方向,旋转角度;
(2)确定关键点,作出关键点旋转后的对应点;
(3)顺次连结。
4、欣赏较复杂旋转图形
图形是由什么基本图形,以哪个点为中心,按哪个方向(顺时针或逆时针)旋转多少度,连续旋转几次,便得到美丽的图案。
二、中心对称
1、中心对称的定义
把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点。
2、中心对称的性质
(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心平所平分。
(2)关于中心对称的两个图形是全等形。
3、作中心对称和图形的一般步骤
(1)确定“代表性的点”;
(2)作出每个代表性的点的对应点;
(3)顺次连结。
三、中心对称图形
1、中心对称图形的定义
把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,过对称中心的直线,可以把图形分成完全重合的两部分。
2、中心对称图形的识别
常见的几何图形,如:线段、等边三角形、平行四边形、矩形、菱形、正方形、等腰梯形、圆,26个大写英文字母(7个),正多边等要会识别,并指出对称中心。
3、两个图形成中心对称和中心对称图形的区别与联系
区别:
(1)中心对称是指两个图形的位置关系,而中心对称图形是指一个具有特殊形状的图形。
(2)研究对象的个数不同,中心对称指两个图形,而中心对称图形只研究一个对象。
(3)中心对称图形的对称中心是图形自身或内部的点,而两个图形关于某点成中心对称,对称中心不定。
联系:两者均是关于点的对称,它们之间无绝对界限,当把两个图形看作整体时,即为中心对称图形,若把中心对称图形看作两部分则两部就可以关于一点成中心对称。
4、中心对称图形和轴对称图形的关系
(1)对称轴条数为正偶数的轴对称图形是中心对称图形,对称中心是对称轴的交点;
(2)对称轴相互垂直的轴对称图形是中心对称图形。
(3)轴对称图形是翻转180°与自身重合,而中心对称图形是旋转180°与自身重合。
四、关于原点对称的点的坐标
1、关于原点对称的点的坐标特征:点关于原点的对称点为.
2、作关于原点成中心对称的图形的步骤:
(1)写出各点关于原点对称的点的坐标;
(2)在坐标平面内描出这些对称点的位置;
(3)顺次连接各点即为所求作的对称图形。
综合训练题
一、精心选一选 (每小题3分,共30分)
AUTONUM .(广东湛江市) 下面的图形中,是中心对称图形的是 ( )
A. B. C. D.
AUTONUM .平面直角坐标系内一点P(-2,3)关于原点对称的点的坐标是 ( )
A.(3,-2)B. (2,3)C.(-2,-3)D. (2,-3)
AUTONUM .3张扑克牌如图1所示放在桌子上,小敏把其中一张旋转180º后得到如图(2)所示,则她所旋转的牌从左数起是 ( )
A.第一张 B.第二张 C.第三张 D.第四张
AUTONUM .在下图右侧的四个三角形中,不能由△ABC经过旋转或平移得到的是( )
A
B
C
A
B
C
D
图3
AUTONUM .如图3的方格纸中,左边图形到右边图形的变换是( )
A.向右平移7格
B.以AB的垂直平分线为对称轴作轴对称,再以AB为对称轴作轴对称
C.绕AB的中点旋转1800,再以AB为对称轴作轴对称
D.以AB为对称轴作轴对称,再向右平移7格
AUTONUM .从数学上对称的角度看,下面几组大写英文字母中,不同于另外三组的一组是( )
图4
A.A N E GB.K B X N
C.X I H OD.Z D W H
AUTONUM .如图4,C是线段BD上一点,分别以BC、CD为边在BD同侧作等边△ABC和
等边△CDE,AD交CE于F,BE交AC于G,则图中可通过旋转而相互得到的三角形
对数有( ).
A.1对B.2对C.3对D.4对
AUTONUM .如图,在等腰直角△ABC中,∠B=90°,将△ABC绕顶点A逆时针方向旋转60°后得到△AB′C′,则等于( )
A.60° B.105° C.120° D.135°
9. (南平)如图,将△ABC绕着点C按顺时针方向旋转20°,B点落在位置,A点落在位置,若,则的度数是( )
A.50° B.60° C.70° D.80°
10、如图所示,在图甲中,Rt△OAB绕其直角顶点O每次旋转90˚,旋转三次得到右边的图形.在图乙中,四边形OABC绕O点每次旋转120˚,旋转二次得到右边的图形.
乙
O
A
B
C
O
A(C1)
B
A1(C2)
B1
B2
C (A2)
O
A
B
O
A
B
A3
B3
B1
A1
B2
A2
甲
下列图形中,不能通过上述方式得到的是 ( )
(A)
(B)
(C)
(D)
二、耐心填一填(每小题3分,共24分)
11.关于中心对称的两个图形,对称点所连线段都经过 ,而且被_____________平分.
12.在平行四边形、矩形、菱形、正方形、等腰梯形这五种图形中,既是轴对称图形,又是中心对称图形的是_____________.
13.时钟上的时针不停地旋转,从上午8时到上午11时,时针旋转的旋转角是_____________.
14.如图8,△ABC以点A为旋转中心,按逆时针方向旋转60°,得△AB′C′,则△ABB′是 三角形.
15.已知a<0,则点关于原点的对称点在第___象限
16.如图9,△COD是△AOB绕点O顺时针方向旋转40°后所得的图形,点C恰好在AB上,
∠AOD=90°,则∠D的度数是 .
17.如图10,四边形ABCD中,∠BAD=∠C=90º,AB=AD,AE⊥BC于E,若线段AE=5,则S四边形ABCD= 。
图10
图8
图9
18.(东营)在平面直角坐标系中,已知点P0的坐标为(1,0),将点P0绕着原点O按逆时针方向旋转60°得 点P1,延长OP1到点P2,使OP2=2OP1,再将点P2绕着原点O按逆时针方向旋转60°得点P3,则点P3的坐标是_________
三、细心解一解
图14
19.如图14,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,的顶点均在格点上,点的坐标为.
①把向上平移5个单位后得到对应的,画出,并写出的坐标;
②以原点为对称中心,再画出与关于原点对称的,并写出点的坐标.
20.(宿迁)如图,在平面直角坐标系中,三角形②、③是由三角形①依次旋转后所得的图形.(1)在图中标出旋转中心P的位置,并写出它的坐标;(2)在图上画出再次旋转后的三角形④.
图16
21.(6分)如图16,E、F分别是正方形ABCD的边CD、DA上一点,且CE+AF=EF,请你用旋转的方法求∠EBF的大小.
22.(6分) 已知正方形ABCD和正方形AEFG有一个公共点A,点G、E分别在线段AD、AB上.
(1) 如图18, 连接DF、BF,若将正方形AEFG绕点A按顺时针方向旋转,判断命题:“在旋转的过程中线段DF与BF的长始终相等.”是否正确,若正确请说明理由,若不正确请举反例说明;
(2) 若将正方形AEFG绕点A按顺时针方向旋转, 连接DG,在旋转的过程中,你能否找到一条线段的长与线段DG的长始终相等.并以图19为例说明理由.
图19
图18
23.(8分)(2008年山西省太原市)将一张透明的平行四边形胶片沿对角线剪开,得到图①中的两张三角形胶片和.将这两张三角形胶片的顶点与顶点重合,把绕点顺时针方向旋转,这时与相交于点.
C
A
E
F
D
B
C
D
O
A
F
B(E)
A
D
O
F
C
B(E)
图①
图②
图③
(1)当旋转至如图②位置,点,在同一直线上时,与的数量关系是 .
(2)当继续旋转至如图③位置时,(1)中的结论还成立吗?请说明理由.
(3)在图③中,连接,探索与之间有怎样的位置关系,并证明.
24.如图,△ABC是等腰直角三角形,其中CA=CB,四边形CDEF是正方形,连接AF、BD.
(1)观察图形,猜想AF与BD之间有怎样的关系,并证明你的猜想;
(2)若将正方形CDEF绕点C按顺时针方向旋转,使正方形CDEF的一边落在△ABC的内部,请你画出一个变换后的图形,并对照已知图形标记字母,题(1)中猜想的结论是否仍然成立?若成立,直接写出结 论,不必证明;若不成立,请说明理由.
拓展题
1.已知如图,点P是正中内一点,满足,,,
(1)求 (2) 正的边长 (提示:以点A为旋转中心,将线段AP逆时针旋转60°AP``,连接PP`,PC)
初中数学人教版九年级上册23.2.1 中心对称精品教案设计: 这是一份初中数学人教版九年级上册23.2.1 中心对称精品教案设计,共11页。教案主要包含了 教学目标, 教学重难点,教学用具,教学过程设计等内容,欢迎下载使用。
初中数学人教版九年级上册23.2.1 中心对称优秀教案设计: 这是一份初中数学人教版九年级上册23.2.1 中心对称优秀教案设计,共5页。教案主要包含了【教材分析】,【教学流程】,【板书设计】,【教后反思】等内容,欢迎下载使用。
初中数学人教版九年级上册23.2.2 中心对称图形教学设计及反思: 这是一份初中数学人教版九年级上册23.2.2 中心对称图形教学设计及反思,共2页。