所属成套资源:人教版八年级上册数学精品专题训练---能力培优(含答案解析)
八年级数学人教版上册【能力培优】11.2与三角形有关的角专题训练(含答案)
展开
11.2与三角形有关的角专题一 利用三角形的内角和求角度1.如图,在△ABC中,∠ABC的平分线与∠ACB的外角平分线相交于D点,∠A=50°,则∠D=( )A.15° B.20° C.25° D.30°2.如图,已知:在直角△ABC中,∠C=90°,BD平分∠ABC且交AC于D. 若AP平分∠BAC且交BD于P,求∠BPA的度数.3.已知:如图1,线段AB、CD相交于点O,连接AD、CB,如图2,在图1的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:
(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系:__________;(2)在图2中,若∠D=40°,∠B=30°,试求∠P的度数;(写出解答过程)
(3)如果图2中∠D和∠B为任意角,其他条件不变,试写出∠P与∠D、∠B之间的数量关系.(直接写出结论即可)
[来源:www.shulihua.net] 专题二 利用三角形外角的性质解决问题4.如图,∠ABD,∠ACD的角平分线交于点P,若∠A=50°,∠D=10°,则∠P的度数为( ) A.15° B.20° C.25° D.30°5.如图,△ABC中,CD是∠ACB的角平分线,CE是AB边上的高,若∠A=40°,∠B=72°.
(1)求∠DCE的度数;
(2)试写出∠DCE与∠A、∠B的之间的关系式.(不必证明) 6.如图:
(1)求证:∠BDC=∠A+∠B+∠C;
(2)如果点D与点A分别在线段BC的两侧,猜想∠BDC、∠A、∠ABD、∠ACD这4个角之间有怎样的关系,并证明你的结论. 状元笔记【知识要点】1.三角形内角和定理三角形三个内角的和等于180°.2.直角三角形的性质及判定 性质:直角三角形的两个锐角互余. 判定:有两个角互余的三角形是直角三角形.3.三角形的外角及性质外角:三角形的一边与另一边的延长线组成的角,叫做三角形的外角.性质:三角形的外角等于与它不相邻的两个内角的和.【温馨提示】1.三角形的外角是一边与另一边的延长线组成的角,而不是两边延长线组成的角.2.三角形的外角的性质中的内角一定是与外角不相邻的内角.【方法技巧】1.在直角三角形中已知一个锐角求另一个锐角时,可直接使用“直角三角形的两个锐角互余”.2.由三角形的外角的性质可得出:三角形的外角大于任何一个与它不相邻的内角. 参考答案:1.C 解析:∵∠ABC的平分线与∠ACB的外角平分线相交于点D,∴∠1=∠ACE,∠2=∠ABC.又∵∠D=∠1-∠2,∠A=∠ACE-∠ABC,∴∠D=∠A=25°.故选C.2.解:(法1) 因为∠C=90°,所以∠BAC+∠ABC=90°, 所以(∠BAC+∠ABC)=45°. 因为BD平分∠ABC,AP平分∠BAC , ∠BAP=∠BAC,∠ABP=∠ABC , 即∠BAP+∠ABP=45°, 所以∠APB=180°-45°=135°. [来源:www.shulihua.net数理化网](法2)因为∠C=90°,所以∠BAC+∠ABC=90°, 所以(∠BAC+∠ABC)=45°, [来源:学§科§网]因为BD平分∠ABC,AP平分∠BAC,∠DBC=∠ABC,∠PAC=∠BAC , 所以∠DBC+∠PAD=45°. [来源:www.shulihua.net]所以∠APB=∠PDA+∠PAD =∠DBC+∠C+∠PAD=∠DBC+∠PAD+∠C =45°+90°=135°. 3.解:(1)∠A+∠D=∠B+∠C;
(2)由(1)得,∠1+∠D=∠3+∠P,∠2+∠P=∠4+∠B,
∴∠1-∠3=∠P-∠D,∠2-∠4=∠B-∠P,
又∵AP、CP分别平分∠DAB和∠BCD,
∴∠1=∠2,∠3=∠4,
∴∠P-∠D=∠B-∠P,
即2∠P=∠B+∠D,
∴∠P=(40°+30°)÷2=35°.
(3)2∠P=∠B+∠D.4.B 解析:延长DC,与AB交于点E.根据三角形的外角等于不相邻的两内角和,可得∠ACD=50°+∠AEC=50°+∠ABD+10°,整理得∠ACD-∠ABD=60°.设AC与BP相交于点O,则∠AOB=∠POC,∴∠P+∠ACD=∠A+∠ABD,即∠P=50°-(∠ACD-∠ABD)=20°.故选B.5.解:(1)∵∠A=40°,∠B=72°,
∴∠ACB=68°.
∵CD平分∠ACB,
∴∠DCB=∠ACB=34°.
∵CE是AB边上的高,
∴∠ECB=90°-∠B=90°-72°=18°.
∴∠DCE=34°-18°=16°.
(2)∠DCE=(∠B-∠A).6.(1)证明:延长BD交AC于点E,
∵∠BEC是△ABE的外角,
∴∠BEC=∠A+∠B.
∵∠BDC是△CED的外角,
∴∠BDC=∠C+∠DEC=∠C+∠A+∠B.
(2)猜想:∠BDC+∠ACD+∠A+∠ABD=360°.
证明:∠BDC+∠ACD+∠A+∠ABD=∠3+∠2+∠6+∠5+∠4+∠1
=(∠3+∠2+∠1)+(∠6+∠5+∠4)
=180°+180°=360°.