所属成套资源:人教版八年级上册数学精品专题训练---能力培优(含答案解析)
八年级数学人教版上册【能力培优】12.3 角的平分线的性质专题训练(含答案)
展开12.3 角的平分线的性质专题一 利用角的平分线的性质解题1.如图,在△ABC中,AC=AB,D在BC上,若DF⊥AB,垂足为F,DG⊥AC,垂足为G,且DF=DG.求证:AD⊥BC. 2.如图,已知CD⊥AB于点D,BE⊥AC于点E,BE,CD交于点O,且AO平分∠BAC. 求证:OB=OC. 3.如图,在Rt△ABC中,∠C=90°,,AD是∠BAC的角平分线,DE⊥AB于点E,AC=3 cm,求BE的长. 专题二 角平分线的性质在实际生活中的应用4.如图,三条公路把A、B、C三个村庄连成一个三角形区域,某地区决定在这个三角形区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,则这个集贸市场应建在( )A.在AC、BC两边高线的交点处B.在AC、BC两边中线的交点处C.在∠A、∠B两内角平分线的交点处D.在AC、BC两边垂直平分线的交点处5.如图,要在河流的南边,公路的左侧M区处建一个工厂,位置选在到河流和公路的距离相等,并且到河流与公路交叉A处的距离为1cm(指图上距离),则图中工厂的位置应在__________,理由是__________.6.已知:有一块三角形空地,若想在空地中找到一个点,使这个点到三边的距离相等,试找出该点.(保留作图痕迹) 状元笔记【知识要点】1.角的平分线的性质 角的平分线上的点到角的两边的距离相等.2.角的平分线的判定 角的内部到角的两边的距离相等的点在角的平分线上.【温馨提示】1.到三角形三边距离相等的点是三角形三条角平分线的交点,不是其他线段的交点.2.到三角形三边距离相等的点不仅有内角的平分线的交点,还有相邻两外角的平分线的交点,这样的点共有4个.【方法技巧】1.利用角的平分线的性质解决问题的关键是:挖掘角的平分线上的一点到角两边的垂线段.若已知条件存在两条垂线段——直接考虑垂线段相等,若已知条件存在一条垂线段——考虑通过作辅助线补出另一条垂线段,[来源:www.shulihua.net若已知条件不存在垂线段——考虑通过作辅助线补出两条垂线段.2.利用角平分线的判定解决问题的策略是:挖掘已知图形中一点到角两边的垂线段. 若已知条件存在两条垂线段——先证明两条垂线段相等,然后说明角平分线或角的关系; 若已知条件存在一条垂线段——考虑通过作辅助线补出另一条垂线段,再证明两条垂线段相等; 若已知条件不存在垂线段——考虑通过作辅助线补出两条垂线段后,证明两条垂线段相等. 参考答案: 1.证明:∵,∴AD是的平分线,∴.在和中,∴.∴.又∵,∴,∴.2.证明:∵AO平分∠BAC,OD⊥AB,OE⊥AC,∴OD=OE,在Rt△BDO和Rt△CEO中,∴.∴OB=OC.3.解:∵∠C=90°,∴∠BAC+∠B=90°,又DE⊥AB,∴∠C=∠AED=90°,又,∴∠A=60°,∠B=30°,又∵AD平分∠BAC,DC⊥AC,DE⊥AB,∴DC=DE,∴cm.在Rt△DAE和Rt△DBE中,∴△DAE≌△DBE(AAS),∴ cm.4.C 解析:根据角平分线的性质,集贸市场应建在∠A、∠B两内角平分线的交点处.故选C.5.∠A的角平分线上,且距A1cm处 角平分线上的点到角两边的距离相等6.解:作两个角的平分线,交点P就是所求作的点.