新课改专用2020版高考数学一轮跟踪检测48《深化提能-与圆有关的综合问题》(含解析)
展开课时跟踪检测(四十八) 深化提能——与圆有关的综合问题
1.(2019·莆田模拟)已知圆O:x2+y2=1,若A,B是圆O上的不同两点,以AB为边作等边△ABC,则|OC|的最大值是( )
A. B.
C.2 D.+1
解析:选C 如图所示,连接OA,OB和OC.∵OA=OB,AC=BC,OC=OC,∴△OAC≌△OBC,∴∠ACO=∠BCO=30°,在△OAC中,由正弦定理得=,∴OC=2sin∠OAC≤2,故|OC|的最大值为2,故选C.
2.已知圆C1:x2+y2+4ax+4a2-4=0和圆C2:x2+y2-2by+b2-1=0只有一条公切线,若a,b∈R且ab≠0,则+的最小值为( )
A.2 B.4
C.8 D.9
解析:选D 圆C1的标准方程为(x+2a)2+y2=4,其圆心为(-2a,0),半径为2;圆C2的标准方程为x2+(y-b)2=1,其圆心为(0,b),半径为1.因为圆C1和圆C2只有一条公切线,所以圆C1与圆C2相内切,所以=2-1,得4a2+b2=1,所以+=(4a2+b2)=5++≥5+2 =9,当且仅当=,且4a2+b2=1,即a2=,b2=时等号成立.所以+的最小值为9.
3.(2017·全国卷Ⅲ)在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD相切的圆上.若=λ+μ,则λ+μ的最大值为( )
A.3 B.2
C. D.2
解析:选A 以A为坐标原点,AB,AD所在直线分别为x轴,y轴建立如图所示的平面直角坐标系,则A(0,0),B(1,0),C(1,2),D(0,2),可得直线BD的方程为2x+y-2=0,点C到直线BD的距离为=,所以圆C:(x-1)2+(y-2)2=.
因为P在圆C上,所以P.
又=(1,0),=(0,2),=λ+μ=(λ,2μ),
所以λ+μ=2+cos θ+sin θ=2+sin(θ+φ)≤3(其中tan φ=2),当且仅当θ=+2kπ-φ,k∈Z时,λ+μ取得最大值3.
4.(2019·拉萨联考)已知点P在圆C:x2+y2-4x-2y+4=0上运动,则点P到直线l:x-2y-5=0的距离的最小值是( )
A.4 B.
C.+1 D.-1
解析:选D 圆C:x2+y2-4x-2y+4=0化为(x-2)2+(y-1)2=1,圆心C(2,1),半径为1,圆心到直线l的距离为=,则圆上一动点P到直线l的距离的最小值是-1.故选D.
5.(2019·赣州模拟)已知动点A(xA,yA)在直线l:y=6-x上,动点B在圆C:x2+y2-2x-2y-2=0上,若∠CAB=30°,则xA的最大值为( )
A.2 B.4
C.5 D.6
解析:选C 由题意可知,当AB是圆的切线时,∠ACB最大,此时|CA|=4.点A的坐标满足(x-1)2+(y-1)2=16,与y=6-x联立,解得x=5或x=1,∴点A的横坐标的最大值为5.故选C.
6.(2018·北京高考)在平面直角坐标系中,记d为点P(cos θ,sin θ)到直线x-my-2=0的距离.当θ,m变化时,d的最大值为( )
A.1 B.2
C.3 D.4
解析:选C 由题知点P(cos θ,sin θ)是单位圆x2+y2=1上的动点,所以点P到直线x-my-2=0的距离可转化为单位圆上的点到直线的距离.又直线x-my-2=0恒过点(2,0),所以当m变化时,圆心(0,0)到直线x-my-2=0的距离d=的最大值为2,所以点P到直线x-my-2=0的距离的最大值为3,即d的最大值为3.
7.(2019·安徽皖西联考)已知P是椭圆+=1上的一点,Q,R分别是圆(x-3)2+y2=和(x+3)2+y2=上的点,则|PQ|+|PR|的最小值是________.
解析:设两圆圆心分别为M,N,则M,N为椭圆的两个焦点,因此|PQ|+|PR|≥|PM|-+|PN|-=2a-1=2×4-1=7,即|PQ|+|PR|的最小值是7.
答案:7
8.(2019·安阳一模)在平面直角坐标系xOy中,点A(0,-3),若圆C:(x-a)2+(y-a+2)2=1上存在一点M满足|MA|=2|MO|,则实数a的取值范围是________.
解析:设满足|MA|=2|MO|的点的坐标为M(x,y),由题意得=2,
整理得x2+(y-1)2=4,
即所有满足题意的点M组成的轨迹方程是一个圆,
原问题转化为圆x2+(y-1)2=4与圆C:(x-a)2+(y-a+2)2=1有交点,
据此可得关于实数a的不等式组解得0≤a≤3,
综上可得,实数a的取值范围是[0,3].
答案:[0,3]
9.(2019·唐山调研)已知点A(-3,0),B(3,0),动点P满足|PA|=2|PB|.
(1)若点P的轨迹为曲线C,求此曲线的方程;
(2)若点Q在直线l1:x+y+3=0上,直线l2经过点Q且与曲线C只有一个公共点M,求|QM|的最小值.
解:(1)设点P的坐标为(x,y),则=2.化简可得(x-5)2+y2=16,故此曲线方程为(x-5)2+y2=16.
(2)曲线C是以点(5,0)为圆心,4为半径的圆,如图所示.
由题知直线l2与圆C相切,连接CQ,CM,
则|QM|==,
当CQ⊥l1时,|CQ|取得最小值,|QM|取得最小值,
此时|CQ|==4,
故|QM|的最小值为=4.
10.(2019·广州一测)已知定点M(1,0)和N(2,0),动点P满足|PN|=|PM|.
(1)求动点P的轨迹C的方程;
(2)若A,B为(1)中轨迹C上两个不同的点,O为坐标原点.设直线OA,OB,AB的斜率分别为k1,k2,k.当k1k2=3时,求k的取值范围.
解:(1)设动点P的坐标为(x,y),
因为M(1,0),N(2,0),|PN|=|PM|,
所以=.
整理得,x2+y2=2.
所以动点P的轨迹C的方程为x2+y2=2.
(2)设点A(x1,y1),B(x2,y2),直线AB的方程为y=kx+b.
由消去y,整理得(1+k2)x2+2bkx+b2-2=0.(*)
由Δ=(2bk)2-4(1+k2)(b2-2)>0,得b2<2+2k2. ①
由根与系数的关系,得x1+x2=-,x1x2=. ②
由k1·k2=·=·=3,
得(kx1+b)(kx2+b)=3x1x2,
即(k2-3)x1x2+bk(x1+x2)+b2=0. ③
将②代入③,整理得b2=3-k2.④
由④得b2=3-k2≥0,解得-≤k≤. ⑤
由①和④,解得k<-或k>. ⑥
要使k1,k2,k有意义,则x1≠0,x2≠0,
所以0不是方程(*)的根,所以b2-2≠0,即k≠1且k≠-1.⑦
由⑤⑥⑦,得k的取值范围为[-,-1)∪∪∪(1, ].