新课改专用2020版高考数学一轮跟踪检测49《椭圆》(含解析)
展开课时跟踪检测(四十九) 椭圆
[A级 基础题——基稳才能楼高]
1.椭圆mx2+ny2+mn=0(m<n<0)的焦点坐标是( )
A.(0,±) B.(±,0)
C.(0,±) D.(±,0)
解析:选C 化为标准方程是+=1,
∵m<n<0,∴0<-n<-m.
∴焦点在y轴上,且c==.
2.与椭圆9x2+4y2=36有相同焦点,且短轴长为2的椭圆的标准方程为( )
A.+=1 B.x2+=1
C.+y2=1 D.+=1
解析:选B 椭圆9x2+4y2=36可化为+=1,可知焦点在y轴上,焦点坐标为(0,±),
故可设所求椭圆方程为+=1(a>b>0),则c=.
又2b=2,即b=1,所以a2=b2+c2=6,
则所求椭圆的标准方程为x2+=1.
3.已知P为椭圆+=1上的一点,M,N分别为圆(x+3)2+y2=1和圆(x-3)2+y2=4上的点,则|PM|+|PN|的最小值为( )
A.5 B.7
C.13 D.15
解析:选B 由题意知椭圆的两个焦点F1,F2分别是两圆的圆心,且|PF1|+|PF2|=10,从而|PM|+|PN|的最小值为|PF1|+|PF2|-1-2=7.
4.已知椭圆+=1(a>b>0)的左焦点为F,右顶点为A,点B在椭圆上,且BF⊥x轴,直线AB交y轴于点P.若=2,则椭圆的离心率是( )
A. B.
C. D.
解析:选D ∵=2,∴||=2||.又∵PO∥BF,∴==,即=,∴e==.
5.(2019·长沙一模)椭圆的焦点在x轴上,中心在原点,其上、下顶点和两个焦点恰为边长是2的正方形的顶点,则椭圆的标准方程为( )
A.+=1 B.+y2=1
C.+=1 D.+=1
解析:选C 由条件可知b=c=,a=2,所以椭圆的标准方程为+=1.故选C.
6.已知F1,F2分别是椭圆C:+=1(a>b>0)的左、右焦点,若椭圆C上存在点P,使得线段PF1的中垂线恰好经过焦点F2,则椭圆C离心率的取值范围是( )
A. B.
C. D.
解析:选C 如图所示,∵线段PF1的中垂线经过F2,∴|PF2|=|F1F2|=2c,即椭圆上存在一点P,使得|PF2|=2c.∴a-c≤2c≤a+c.∴e=∈.
[B级 保分题——准做快做达标]
1.(2019·武汉模拟)曲线+=1与曲线+=1(k<9)的( )
A.长轴长相等 B.短轴长相等
C.离心率相等 D.焦距相等
解析:选D 曲线+=1表示焦点在x轴上的椭圆,其长轴长为10,短轴长为6,焦距为8,离心率为.曲线+=1(k<9)表示焦点在x轴上的椭圆,其长轴长为2,短轴长为2,焦距为8,离心率为 .对照选项,知D正确.故选D.
2.(2019·德阳模拟)设P为椭圆C:+=1上一点,F1,F2分别是椭圆C的左、右焦点,且△PF1F2的重心为点G,若|PF1|∶|PF2|=3∶4,那么△GPF1的面积为( )
A.24 B.12
C.8 D.6
解析:选C ∵P为椭圆C:+=1上一点,|PF1|∶|PF2|=3∶4,|PF1|+|PF2|=2a=14,∴|PF1|=6,|PF2|=8,又∵|F1F2|=2c=2=10,∴易知△PF1F2是直角三角形,S△PF1F2=|PF1|·|PF2|=24,∵△PF1F2的重心为点G,∴S△PF1F2=3S△GPF1,∴△GPF1的面积为8,故选C.
3.斜率为1的直线l与椭圆+y2=1相交于A,B两点,则|AB|的最大值为( )
A.2 B.
C. D.
解析:选C 设A,B两点的坐标分别为(x1,y1),(x2,y2),直线l的方程为y=x+t,
由消去y,得5x2+8tx+4(t2-1)=0,
则x1+x2=-t,x1x2=.
∴|AB|=|x1-x2|
=·
=·
=·,
当t=0时,|AB|max=.
4.(2019·贵阳摸底)P是椭圆+=1(a>b>0)上的一点,A为左顶点,F为右焦点,PF⊥x轴,若tan∠PAF=,则椭圆的离心率e为( )
A. B.
C. D.
解析:选D 不妨设点P在第一象限,因为PF⊥x轴,所以xP=c,将xP=c代入椭圆方程得yP=,即|PF|=,则tan∠PAF===,结合b2=a2-c2,整理得2c2+ac-a2=0,两边同时除以a2得2e2+e-1=0,解得e=或e=-1(舍去).故选D.
5.(2019·长郡中学选拔考试)已知椭圆C:+=1(a>b>0)与圆D:x2+y2-2ax+a2=0交于A,B两点,若四边形OADB(O为原点)是菱形,则椭圆C的离心率为( )
A. B.
C. D.
解析:选B 由已知可得圆D:(x-a)2+y2=a2,圆心D(a,0),则菱形OADB对角线的交点的坐标为,将x=代入圆D的方程得y=±,不妨设点A在x轴上方,即A,代入椭圆C的方程可得+=1,所以a2=b2=a2-c2,解得a=2c,所以椭圆C的离心率e==.
6.(2019·沙市中学测试)已知椭圆C:+=1(a>b>0)的离心率为,双曲线x2-y2=1的渐近线与椭圆C有4个交点,以这4个交点为顶点的四边形的面积为8,则椭圆C的方程为( )
A.+=1 B.+=1
C.+=1 D.+=1
解析:选C 由题意知双曲线x2-y2=1的渐近线方程为y=±x,由椭圆的对称性可知以这4个交点为顶点的四边形是正方形,由四边形的面积为8,知正方形的边长为2,所以点(,)在椭圆上,所以+=1. ①
又椭圆的离心率为,
所以=,所以a2=2b2. ②
由①②得a2=6,b2=3,所以椭圆C的方程为+=1.故选C.
7.(2019·安阳模拟)已知F1,F2分别是椭圆+=1(a>b>0)的左、右焦点,P为椭圆上一点,且·(+)=0(O为坐标原点),若||=||,则椭圆的离心率为( )
A.- B.
C.- D.
解析:选A 以OF1,OP为邻边作平行四边形,根据向量加法的平行四边形法则,
由·(+)=0知,此平行四边形的对角线垂直,即此平行四边形为菱形,∴||=||,∴△F1PF2是直角三角形,即PF1⊥PF2.设|PF2|=x,则|PF1|=x,结合椭圆的性质和三角形勾股定理可得∴e===-.故选A.
8.(2019·西宁复习检测)在平面直角坐标系xOy中,P是椭圆+=1上的一个动点,点A(1,1),B(0,-1),则|PA|+|PB|的最大值为( )
A.5 B.4
C.3 D.2
解析:选A ∵椭圆的方程为+=1,∴a2=4,b2=3,c2=1,∴B(0,-1)是椭圆的一个焦点,设另一个焦点为C(0,1),如图所示,根据椭圆的定义知,|PB|+|PC|=4,∴|PB|=4-|PC|,∴|PA|+|PB|=4+|PA|-|PC|≤4+|AC|=5.
9.已知点P是椭圆+=1(x≠0,y≠0)上的动点,F1,F2分别是椭圆的左、右焦点,O是坐标原点,若M是∠F1PF2的平分线上一点,且·=0,则||的取值范围是( )
A.[0,3) B.(0,2)
C.[2,3) D.(0,4]
解析:选B 如图,延长F1M交PF2的延长线于点G.
∵·=0,∴⊥.
又MP为∠F1PF2的平分线,
∴|PF1|=|PG|,且M为F1G的中点.
∵O为F1F2的中点,∴OM綊F2G.
∵|F2G|=||PF2|-|PG||=||PF1|-|PF2||,
∴||=|2a-2|PF2||=|4-|PF2||.
∵4-2<|PF2|<4或4<|PF2|<4+2,
∴||∈(0,2).
10.已知F1(-c,0),F2(c,0)为椭圆+=1的两个焦点,P在椭圆上且满足·=c2,则此椭圆离心率的取值范围是( )
A. B.
C. D.
解析:选B 设P(x,y),则+=1,y2=b2-x2,-a≤x≤a,=(-c-x,-y),=(c-x,-y).
所以·=x2-c2+y2=x2+b2-c2=x2+b2-c2.
因为-a≤x≤a,所以b2-c2≤·≤b2.
所以b2-c2≤c2≤b2.
所以2c2≤a2≤3c2.
所以≤≤.故选B.
11.设e是椭圆+=1的离心率,且e=,则实数k的值是________.
解析:当k>4 时,有e= =,解得k=;当0<k<4时,有e= =,解得k=.故实数k的值为或.
答案:或
12.(2019·湖北稳派教育联考)已知椭圆+=1(a>b>0)的半焦距为c,且满足c2-b2+ac<0,则该椭圆的离心率e的取值范围是________.
解析:∵c2-b2+ac<0,∴c2-(a2-c2)+ac<0,即2c2-a2+ac<0,∴2-1+<0,即2e2+e-1<0,解得-1<e<.又∵0<e<1,∴0<e<.∴椭圆的离心率e的取值范围是.
答案:
13.如图,椭圆的中心在坐标原点O,顶点分别是A1,A2,B1,B2,焦点分别为F1,F2,延长B1F2与A2B2交于P点,若∠B1PA2为钝角,则此椭圆的离心率的取值范围为______.
解析:设椭圆的方程为+=1(a>b>0),∠B1PA2为钝角可转化为,所夹的角为钝角,则(a,-b)·(-c,-b)<0,即b2<ac,则a2-c2<ac,故2+-1>0,即e2+e-1>0,解得e>或e<,又0<e<1,所以<e<1.
答案:
14.(2019·辽宁联考)设F1,F2分别是椭圆+=1的左、右焦点,P为椭圆上任一点,点M的坐标为(6,4),则|PM|+|PF1|的最大值为________.
解析:在椭圆+=1中,a=5,b=4,c=3,所以焦点坐标分别为F1(-3,0),F2(3,0).根据椭圆的定义得|PM|+|PF1|=|PM|+(2a-|PF2|)=10+(|PM|-|PF2|).
∵|PM|-|PF2|≤|MF2|,当且仅当P在直线MF2上时取等号, ∴当点P与图中的点P0重合时,有(|PM|-|PF2|)max==5,此时得|PM|+|PF1|的最大值,为10+5=15.
答案:15
15.(2019·武汉调研)设O为坐标原点,动点M在椭圆C:+y2=1(a>1,a∈R)上,过O的直线交椭圆C于A,B两点,F为椭圆C的左焦点.
(1)若△FAB的面积的最大值为1,求a的值;
(2)若直线MA,MB的斜率乘积等于-,求椭圆C的离心率.
解:(1)S△FAB=|OF|·|yA-yB|≤|OF|==1,所以a=.
(2)由题意可设A(x0,y0),B(-x0,-y0),M(x,y),则+y2=1,+y=1,
kMA·kMB=·====-=-,
所以a2=3,所以a=,所以c==,
所以椭圆的离心率e===.
16.(2019·广东七校联考)已知动点M到定点F1(-2,0)和F2(2,0)的距离之和为4.
(1)求动点M的轨迹C的方程;
(2)设N(0,2),过点P(-1,-2)作直线l,交C于不同于N的两点A,B,直线NA,NB的斜率分别为k1,k2,求k1+k2的值.
解:(1)由椭圆的定义,可知点M的轨迹是以F1,F2为焦点,4为长轴长的椭圆.由c=2,a=2,得b=2.故动点M的轨迹C的方程为+=1.
(2)当直线l的斜率存在时,设其方程为y+2=k(x+1),
由得(1+2k2)x2+4k(k-2)x+2k2-8k=0.Δ=[4k(k-2)]2-4(1+2k2)(2k2-8k)>0,则k>0或k<-.
设A(x1,y1),B(x2,y2),则x1+x2=-,x1x2=.
从而k1+k2=+=
=2k-(k-4)=4.
当直线l的斜率不存在时,得A,B.所以k1+k2=4.
综上,恒有k1+k2=4.