


新课改专用2020版高考数学一轮跟踪检测56《统计》(含解析)
展开课时跟踪检测(五十六) 统计
1.(2019·福州质检)下面抽样方法是简单随机抽样的是( )
A.从平面直角坐标系中抽取5个点作为样本
B.可口可乐公司从仓库中的1 000箱可乐中一次性抽取20箱进行质量检查
C.某连队从200名战士中,挑选出50名最优秀的战士去参加抢险救灾活动
D.从10个手机中逐个不放回地随机抽取2个进行质量检验(假设10个手机已编号)
解析:选D 平面直角坐标系中有无数个点,这与简单随机抽样中要求总体中的个体数有限不相符,故A错误;一次性抽取不符合简单随机抽样逐个抽取的特点,故B错误;50名战士是最优秀的,不符合简单随机抽样的等可能性,故C错误.故选D.
2.(2019·北大附中期末)某学院A,B,C三个专业共有1 200名学生,为了调查这些学生勤工俭学的情况,拟采用分层抽样的方法抽取一个容量为120的样本,已知该学院的A专业有380名学生,B专业有420名学生,则应在该学院的C专业抽取的学生人数为( )
A.30 B.40
C.50 D.60
解析:选B C专业的学生有1 200-380-420=400名,由分层抽样知应抽取120×=40名.故选B.
3.从2 015名学生中选取50名学生参加全国数学联赛,若采用下面的方法选取:先用简单随机抽样方法从2 015人中剔除15人,剩下的2 000人再按系统抽样的方法抽取,则每人入选的概率( )
A.不全相等 B.均不相等
C.都相等,且为 D.都相等,且为
解析:选C 因为简单随机抽样和系统抽样都是等可能抽样,从N个个体中抽取M个个体,则每个个体被抽到的概率都等于,故从2 015名学生中选取50名学生参加全国数学联赛,每人入选的概率都相等,且为.故选C.
4.(2019·广西南宁毕业班摸底)已知某地区中小学生人数和近视情况分别如图甲和图乙所示.为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为( )
A.100,20 B.200,20
C.200,10 D.100,10
解析:选B 由题图甲可知学生总人数是10 000,样本容量为10 000×2%=200,抽取的高中生人数是2 000×2%=40,由题图乙可知高中生的近视率为50%,所以高中生的近视人数为40×50%=20,故选B.
5.(2019·福州质检)某学校共有师生4 000人,现用分层抽样的方法从所有师生中抽取一个容量为200的样本,调查师生对学校食堂餐饮问题的建议,已知从学生中抽取的人数为190,那么该校的教师人数为( )
A.100 B.150
C.200 D.250
解析:选C 设教师人数为x,由题意知:=,解得x=200,故选C.
6.(2019·南昌模拟)我国古代数学名著《九章算术》有“米谷粒分”题:发仓募粮,所募粒中秕不百三则收之(不超过3%),现抽样取米一把,取得235粒米中夹秕n粒,若这批米合格,则n不超过( )
A.6 B.7
C.8 D.9
解析:选B 由题意得,×100%≤3%,解得n≤7.05,所以若这批米合格,则n不超过7.故选B.
7.某校初三年级有400名学生,随机抽查了40名学生测试1分钟仰卧起坐的成绩(单位:次),将数据整理后绘制成如图所示的频率分布直方图.用样本估计总体,下列结论正确的是( )
A.该校初三学生1分钟仰卧起坐的次数的中位数为25
B.该校初三学生1分钟仰卧起坐的次数的众数为24
C.该校初三学生1分钟仰卧起坐的次数超过30的人数约有80
D.该校初三学生1分钟仰卧起坐的次数少于20的人数约为8
解析:选C 第一组数据的频率为0.02×5=0.1,第二组数据的频率为0.06×5=0.3,第三组数据的频率为0.08×5=0.4,∴中位数在第三组内,设中位数为25+x,则x×0.08=0.5-0.1-0.3=0.1,∴x=1.25,∴中位数为26.25,故A错误.第三组数据所在的矩形最高,第三组数据的中间值为27.5,∴众数为27.5,故B错误.1分钟仰卧起坐的次数超过30的频率为0.04×5=0.2,∴超过30次的人数为400×0.2=80,故C正确.1分钟仰卧起坐的次数少于20的频率为0.02×5=0.1,∴1分钟仰卧起坐的次数少于20的人数为400×0.1=40,故D错误.故选C.
8.(2019·黄陵中学期末)为了了解某地区高三学生的身体发育情况,抽查了该地区100名年龄在17~18岁的男生体重(kg),将他们的体重按[54.5,56.5),[56.5,58.5),…,[74.5,76.5]分组,得到的频率分布直方图如图所示.由图可知这100名学生中体重在[56.5,64.5)的学生人数是( )
A.20 B.30
C.40 D.50
解析:选C 由频率分布直方图可得体重在[56.5,64.5)的学生的频率为(0.03+0.05+0.05+0.07)×2=0.4,则这100名学生中体重在[56.5,64.5)的学生人数为100×0.4=40.故选C.
9.(2019·广西五市联考)如图是2018年第一季度五省GDP情况图,则下列陈述正确的是( )
①2018年第一季度GDP总量和增速均居同一位的省只有1个;
②与去年同期相比,2018年第一季度五个省的GDP总量均实现了增长;
③去年同期的GDP总量前三位是D省、B省、A省;
④2017年同期A省的GDP总量也是第三位.
A.①② B.②③④
C.②④ D.①③④
解析:选B ①2018年第一季度GDP总量和增速均居同一位的省有2个,B省和C省的GDP总量和增速分别居第一位和第四位,故①错误;由图知②正确;由图计算2017年同期五省的GDP总量,可知前三位为D省、B省、A省,故③正确;由③知2017年同期A省的GDP总量是第三位,故④正确.故选B.
10.如图是一容量为100的样本重量的频率分布直方图,则由图可估计样本重量的平均数与中位数分别为( )
A.13,12
B.12,12
C.11,11
D.12,11
解析:选B 平均重量为7.5×5×0.06+12.5×5×0.1+17.5×(1-5×0.06-5×0.1)=12,设中位数为x,则(x-10)×0.1=0.5-5×0.06,解得x=12.故选B.
11.(2019·榆林二中模拟)某学校为了调查学生在学科教辅书方面的支出情况,抽出了一个容量为n的样本,其频率分布直方图如图所示,其中支出的钱数在[30,40)的同学比支出的钱数在[10,20)的同学多26人,则n的值为________.
解析:由频率分布直方图可得支出的钱数在[30,40)的同学有0.038×10n=0.38n个,支出的钱数在[10,20)的同学有0.012×10n=0.12n个,又支出的钱数在[30,40)的同学比支出的钱数在[10,20)的同学多26人,所以0.38n-0.12n=0.26n=26,解得n=100.
答案:100
12.(2019·河南高三联考)某班学生A,B在高三8次月考的化学成绩用茎叶图表示如图,其中学生A的平均成绩与学生B的成绩的众数相等,则m=________.
解析:由题意,得=84,解得m=5.
答案:5
13.(2019·沈阳期末联考)为了了解2 000名学生的学习情况,计划采用系统抽样的方法从全体学生中抽取容量为100的样本,若第一组抽出的号码为11,则第五组抽出的号码为________.
解析:采用系统抽样的方法从2 000名学生中抽取容量为100的样本,则先分成100组,每组20人,即号码间隔为20,若第一组抽出的号码为11,则第五组抽出的号码为11+20×(5-1)=91.
答案:91
14.为了考察某校各班参加课外书法小组的人数,从全校随机抽取5个班级,把每个班级参加该小组的人数作为样本数据.已知样本平均数为7,样本方差为4,且样本数据互不相同,则样本数据中的最大值为________.
解析:设5个数据分别为x1,x2,x3,x4,x5.∵平均数为7,∴=7.又∵样本方差为4,∴4=[(x1-7)2+(x2-7)2+…+(x5-7)2],∴20=x+x+x+x+x-2×7×(x1+x2+x3+x4+x5)+72×5,∴x+x+x+x+x=265.又∵42+62+72+82+102=265,∴样本数据中的最大值为10.
答案:10
15.(2019·湖南长郡中学选拔考试)据了解,大学英语四级改革的一项重要内容就是总分改为710分,每个考生会有一个成绩,不再颁发“合格证”,这也意味着,不再有“及格”一说.大学英语四级考试成绩在425分及以上的考生可以报考大学英语六级考试,英语四级成绩在550分及以上的考生可以报考口语考试.如图是从某大学数学专业40人的英语四级成绩中随机抽取8人的成绩的茎叶图.
(1)通过这8人的英语四级成绩估计该大学数学专业英语四级考试成绩的平均数和中位数;
(2)在这8人中,从可以报考大学英语六级考试的学生中任取2人,求这2人都可以报考口语考试的概率.
解:(1)这8人的英语四级成绩的平均数为(386+410+450+485+520+564+575+610)÷8=500(分),这8人的英语四级成绩的中位数为(485+520)÷2=502.5(分),由此可估计该大学数学专业英语四级考试成绩的平均数为500分,中位数为502.5分.
(2)设可以报考大学英语六级考试但不能报考口语的3人为A1,A2,A3,可以报考口语的3人为B1,B2,B3,从这6人中任取2人,全部情况为(A1,A2),(A1,A3),(A1,B1),(A1,B2),(A1,B3),(A2,A3),(A2,B1),(A2,B2),(A2,B3),(A3,B1),(A3,B2),(A3,B3),(B1,B2),(B1,B3),(B2,B3),共15种.这2人都可以报考口语考试的情况为(B1,B2),(B1,B3),(B2,B3),共3种,则这2人都可以报考口语考试的概率P==.
16.(2019·新乡一模)为了了解甲、乙两个工厂生产的轮胎的宽度是否达标,从两厂各随机选取了10个轮胎,将每个轮胎的宽度(单位:mm)记录下来并绘制出如下的折线图:
(1)分别计算甲、乙两厂提供的10个轮胎宽度的平均值;
(2)若轮胎的宽度在[194,196]内,则称这个轮胎是标准轮胎.试比较甲、乙两厂分别提供的10个轮胎中所有标准轮胎宽度的方差的大小,根据两厂的标准轮胎宽度的平均水平及其波动情况,判断这两个工厂哪个的轮胎相对更好.
解:(1)甲厂10个轮胎宽度的平均值:
甲=×(195+194+196+193+194+197+196+195+193+197)=195(mm),
乙厂10个轮胎宽度的平均值:
乙=×(195+196+193+192+195+194+195+192+195+193)=194(mm).
(2)甲厂10个轮胎中宽度在[194,196]内的数据为195,194,196,194,196,195,
平均数:1=×(195+194+196+194+196+195)=195,
方差:s=×[(195-195)2+(194-195)2+(196-195)2+(194-195)2+(196-195)2+(195-195)2]=,
乙厂10个轮胎中宽度在[194,196]内的数据为195,196,195,194,195,195,
平均数:2=×(195+196+195+194+195+195)=195,
方差:s=×[(195-195)2+(196-195)2+(195-195)2+(194-195)2+(195-195)2+(195-195)2]=,
∵两厂标准轮胎宽度的平均数相等,但乙厂的方差更小,
∴乙厂的轮胎相对更好.