|试卷下载
搜索
    上传资料 赚现金
    九年级数学上册24.2.2+直线和圆的位置关系同步测试+新人教版
    立即下载
    加入资料篮
    九年级数学上册24.2.2+直线和圆的位置关系同步测试+新人教版01
    九年级数学上册24.2.2+直线和圆的位置关系同步测试+新人教版02
    九年级数学上册24.2.2+直线和圆的位置关系同步测试+新人教版03
    还剩8页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学人教版九年级上册24.2.2 直线和圆的位置关系优秀习题

    展开
    这是一份初中数学人教版九年级上册24.2.2 直线和圆的位置关系优秀习题,共11页。

    第1课时 直线和圆的位置关系 [见A本P43]





    1.已知⊙O的半径为5,圆心O到直线l的距离为3,则反映直线l与⊙O的位置关系的图形是( B )





    【解析】 ∵⊙O的半径r为5,圆心O到直线l的距离d为3,且0<d<r,∴直线l与⊙O的位置关系是相交且直线l不经过圆心.


    2.已知圆的半径是5 cm,如果圆心到直线的距离是5 cm,那么直线和圆的位置关系是( B )


    A.相交 B.相切 C.相离 D.内含


    【解析】 d=r=5 cm,故选B.


    3.[2013·青岛]直线l与半径为r的⊙O相交,且点O到直线l的距离为6,则r的取值范围是( C )


    A.r<6 B.r=6


    C.r>6 D.r≥6


    【解析】∵直线l与半径为r的⊙O相交,且点O到直线l的距离d=6,


    ∴r>6.


    4.已知⊙O的半径为2,直线l上有一点P满足PO=2,则直线l与⊙O的位置关系是( D )


    A.相切 B.相离


    C.相离或相切 D.相切或相交


    【解析】 当OP垂直于直线l时,即圆心O到直线l的距离d=2=r,⊙O与l相切;当OP不垂直于直线l时,即圆心O到直线l的距离d<2=r,⊙O与直线l相交,故直线l与⊙O的位置关系是相切或相交.


    5.在平面直角坐标系xOy中,以点(-3,4)为圆心,4为半径的圆( C )


    A.与x轴相交,与y轴相切


    B.与x轴相离,与y轴相交


    C.与x轴相切,与y轴相交


    D.与x轴相切,与y轴相离


    6.Rt△ABC中,∠C=90°,AC=3 cm,BC=4 cm,以C为圆心,r为半径作圆,若圆C与直线AB相切,则r的值为( B )


    A.2 cm B.2.4 cm C.3 cm D.4 cm


    7.在△ABC中,已知∠ACB=90°,BC=AC=10,以C为圆心,分别以5,5eq \r(2),8为半径作圆,那么直线AB与圆的位置关系分别为__相离__、__相切__、__相交__.


    【解析】 C到AB的距离d=5eq \r(2).当d=5eq \r(2)>r=5时,直线AB与圆相离;当d=5eq \r(2)=r时,直线AB与圆相切;当d=5eq \r(2)<r=8时,直线AB与圆相交.


    8.已知⊙O的面积为9π cm2,若点O到直线l的距离为π cm,则直线l与⊙O的位置关系是__相离__.


    【解析】 因为⊙O的面积为9π cm2,所以⊙O的半径r=3 cm,而点O到直线l的距离d=π cm,所以d>r,所以直线l与⊙O相离.





    图24-2-7


    9.如图24-2-7,在Rt△ABC中,∠C=90°,∠A=60°,BC=4 cm,以点C为圆心,以3 cm长为半径作圆,则⊙C与AB的位置关系是__相交__.


    【解析】 在Rt△ABC中,因为∠C=90°,∠A=60°,所以∠B=30°,所以AB=2AC.由勾股定理得AC2+BC2=AB2,即AC2+42=4AC2,解得AC=eq \f(4,3)eq \r(3)(负值已舍),所以AB=2AC=eq \f(8,3)eq \r(3).设C到AB的距离为CD,则CD=eq \f(AC·BC,AB)=eq \f(\f(4,3)\r(3)×4,\f(8\r(3),3))=2 cm<3 cm,所以以点C为圆心,以3 cm长为半径的⊙C与AB的位置关系是相交.


    10.已知∠AOB=30°,P是OA上的一点,OP=24 cm,以r为半径作⊙P.


    (1)若r=12 cm,试判断⊙P与OB的位置关系;


    (2)若⊙P与OB相离,试求出r需满足的条件.





    图24-2-8


    解:过点P作PC⊥OB,垂足为C,则∠OCP=90°.


    ∵∠AOB=30°,OP=24 cm,


    ∴PC=OP=12 cm.





    (1)当r=12 cm时,r=PC,


    ∴⊙P与OB相切,


    即⊙P与OB位置关系是相切.


    (2)当⊙P与OB相离时,r<PC,


    ∴r需满足的条件是:0 cm<r<12 cm.








    图24-2-9


    11.如图24-2-9,在平面直角坐标系中,⊙O的半径为1,则直线y=x-eq \r(2)与⊙O的位置关系是( B )


    A.相离 B.相切


    C.相交 D.以上三种情况都有可能


    12.如图24-2-10,在平面直角坐标系xOy中,若动点P在抛物线y=ax2上,⊙P恒过点(0,n).且与直线y=-n始终保持相切,则n=__eq \f(1,4a)__(用含a的代数式表示).





    图24-2-10


    【解析】 如图,连接PF.设⊙P与直线y=-n相切于点E,连接PE.则PE⊥AE.





    ∵动点P在抛物线y=ax2上,


    ∴设P(m,am2).


    ∵⊙P恒过点F(0,n),


    ∴PE=PF,即m=2n


    又∵am2=n


    ∴n=eq \f(1,4a).


    故答案是eq \f(1,4a).


    13.如图24-2-11,在▱ABCD中,AB=10,AD=m,∠D=60°,以AB为直径作⊙O.





    图24-2-11


    (1)求圆心O到CD的距离(用含m的代数式来表示);


    (2)当m取何值时,CD与⊙O相切?


    解:(1)分别过A,O两点作AE⊥CD,OF⊥CD,垂足分别是点E,F,


    ∴AE∥OF,OF就是圆心O到CD的距离.


    ∵四边形ABCD是平行四边形,


    ∴AB∥CD,∴AE=OF.


    在△ADE中,∠D=60°,∠AED=90°,∴∠DAE=30°,∴DE=eq \f(1,2)AD=eq \f(1,2)m,∴AE=eq \r(AD2-DE2)=eq \r(m2-\b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)m))\s\up12(2))=eq \f(\r(3),2)m,∴OF=AE=eq \f(\r(3),2)m.


    (2)∵OF=eq \f(\r(3),2)m,AB为⊙O的直径,且AB=10,


    ∴当OF=5时,CD与⊙O相切于F点,


    即eq \f(\r(3),2)m=5,m=eq \f(10\r(3),3),∴当m=eq \f(10\r(3),3)时,CD与⊙O相切.


    14.如图24-2-12所示,在△ABC中,AD为BC边上的高,且AD=eq \f(1,2)BC,E,F分别为AB,AC的中点,试问以EF为直径的圆与BC有怎样的位置关系.





    图24-2-12





    第14题答图


    解:如图所示,过EF的中点O作OG⊥BC于G,


    ∵E,F分别为AB,AC的中点,


    ∴EF为△ABC的中位线.∴EF=eq \f(1,2)BC,


    即BC=2EF.


    又∵OG⊥BC,AD⊥BC,EF是△ABC的中位线,


    AD=eq \f(1,2)BC,∴OG=eq \f(1,2)AD=eq \f(1,4)BC=eq \f(1,4)×2EF=eq \f(1,2)EF=OF.∴以EF为直径的圆与BC相切.


    15.如图24-2-13所示,点A是一个半径为300 m的圆形森林公园的中心,在森林公园附近有B,C两个村庄,现要在B,C两个村庄间修一条长为1 000 m的笔直公路将两村连通,经测得∠ABC=45°,∠ACB=30°,问此公路是否会穿过森林公园?请通过计算进行说明.





    图24-2-13





    第15题答图


    【解析】 此题实质上是判断直线BC与⊙A的位置关系.问题的关键是求出点A到直线BC的距离AH的长,可设AH=x,在Rt△ABH和Rt△ACH中分别用x表示出BH及CH,然后依据BH+CH=BC构建方程求解即可.


    解:如图所示,


    过点A作AH⊥BC于点H,设AH=x m.


    ∵∠ABC=45°,∴BH=AH=x m.∵∠ACB=30°,∴AC=2x m,


    由勾股定理可得CH=eq \r(3)x m.


    又∵BH+CH=BC,BC=1 000 m,∴x+eq \r(3)x=1 000,解得x=500(eq \r(3)-1)>300,


    即BC与⊙A相离,故此公路不会穿过森林公园.





    16.由于过度采伐森林和破坏植被,我国部分地区频频遭受沙尘侵袭.如图24-2-14所示,近日,A城气象局测得沙尘暴的中心在A城的正西方向240 km的B处,正以每小时12 km的速度向北偏东60°的方向移动,距沙尘暴的中心150 km的范围内为受影响区域.


    (1)A城是否受到这次沙尘暴的影响?为什么?


    (2)若A城受到这次沙尘暴的影响,那么遭受影响的时间有多长?





    图24-2-14





    第16题答图


    解:(1)如图所示,过A作AC⊥BM于C,则AC=eq \f(1,2)AB=120<150,因此A城受到这次沙尘暴的影响.


    (2)设沙尘暴由B移动到D点时A城刚好受到这次沙尘暴的影响,则AD=150,DC=eq \r(AD2-AC2)=90,那么A城遭受影响的时间为=eq \f(2DC,12)=eq \f(2×90,12)=15(h).





    第2课时 切线的判定和性质 [见B本P44]








    1.下列结论中,正确的是( D )


    A.圆的切线必垂直于半径


    B.垂直于切线的直线必经过圆心


    C.垂直于切线的直线必经过切点


    D.经过圆心与切点的直线必垂直于切线


    【解析】 根据切线的性质来判断.选项A中,只有过切点的半径才与切线垂直;选项B中,只有过切点且垂直于切线的直线才经过圆心;选项C中,只有垂直于切线的半径才经过切点,所以A,B,C都错误,故选D.


    2.如图24-2-15,AB是⊙O的弦,BC与⊙O相切于点B,连接OA,OB,若∠ABC=70°,则∠A等于( B )


    A.15° B.20° C.30° D.70°


    【解析】 ∵BC与⊙O相切于点B,∴OB⊥BC,


    ∴∠OBC=90°.∵∠ABC=70°,∴∠OBA=∠OBC-∠ABC=90°-70°=20°.∵OA=OB,∴∠A=∠OBA=20°.





    图24-2-15





    图24-2-16


    3.如图24-2-16所示,⊙O与直线AB相切于点A,BO与⊙O交于点C,若∠BAC=30°,则∠B等于( B )


    A.29° B.30° C.31° D.32°


    【解析】 连接OA,则∠OAB=90°,又∠CAB=30°,


    ∴∠OAC=60°.又OA=OC,


    ∴△OAC是等边三角形,∴∠O=60°,


    ∴∠B=30°.


    4.如图24-2-17所示,线段AB是⊙O上一点,∠CDB=20°,过点C作⊙O的切线交AB的延长线于点E,则∠E等于( A )





    图24-2-17


    A.50° B.40° C.60° D.70°


    【解析】 连接OC,


    ∵圆心角∠BOC与圆周角∠CDB都对弧BC,


    ∴∠BOC=2∠CDB,又∠CDB=20°,


    ∴∠BOC=40°,


    又∵CE为圆O的切线,


    ∴OC⊥CE,即∠OCE=90°,


    则∠E=90°-40°=50°.





    图24-2-18


    5.如图24-2-18,AB是⊙O的直径,BC交⊙O于点D,DE⊥AC于点E,要使DE是⊙O的切线,还需补充一个条件,则补充的条件不正确的是( A )


    A.DE=DO B.AB=AC


    C.CD=DB D.AC∥OD


    6.如图24-2-19,以O为圆心的两个同心圆中,大圆的弦切小圆于点C,若∠AOB=120°,则大圆半径R与小圆半径r之间满足( C )


    A.R=eq \r(3)r B.R=3r


    C.R=2r D.R=2eq \r(2)r


    【解析】 连接OC,因为大圆的弦切小圆于点C,所以OC⊥AB,又因为OA=OB,所以∠AOC=eq \f(1,2)×120°=60°,所以∠A=30°,所以OA=2OC,即R=2r,故选C.





    图24-2-19





    图24-2-20


    7.如图24-2-20,点P是⊙O外一点,PA是⊙O的切线,切点为A,⊙O的半径OA=2 cm,∠P=30°,则PO=__4__cm.


    8.如图24-2-21,从⊙O外一点A引圆的切线AB,切点为B,连接AO并延长交圆于点C,连接BC.若∠A=26°,则∠ACB的度数为__32°__.





    图24-2-21





    图24-2-22


    9.如图24-2-22,△ABC的一边AB是⊙O的直径,请你添加一个条件,使BC是⊙O的切线,你所添加的条件为__AB⊥BC__.


    【解析】 当△ABC为直角三角形时,即∠ABC=90°时,BC与圆相切,理由是:经过半径外端,与半径垂直的直线是圆的切线.


    10.如图24-2-23,AB是⊙O的直径,O是圆心,BC与⊙O相切于B点,CO交⊙O于点D,且BC=8,CD=4,那么⊙O的半径是__6__.





    图24-2-23





    图24-2-24


    11.如图24-2-24,已知P是⊙O外一点,PO交⊙O于点C,OC=CP=2,弦AB⊥OC,劣弧AB的度数为120°,连接PB.


    (1)求BC的长;


    (2)求证:PB是⊙O的切线.





    解:(1)连接OB,∵弦AB⊥OC,劣弧AB的度数为120°,


    ∴∠COB=60°,


    又∵OC=OB.


    ∴△OBC是正三角形,


    ∴BC=OC=2.


    (2)证明:∵BC=CP,


    ∴.∠CBP=∠CPB,


    ∵△OBC是正三角形,


    ∴∠OBC=∠OCB=60°.


    ∴∠CBP=30°,


    ∴∠OBP=∠CBP+∠OBC=90°,


    ∴OB⊥BP,


    ∵点B在⊙O上,∴PB是⊙O的切线.





    12.如图24-2-25,AD是⊙O的弦,AB经过圆心O,交⊙O于点C,∠DAB=∠B=30°.


    (1)直线BD是否与⊙O相切?为什么?


    (2)连接CD,若CD=5,求AB的长.





    图24-2-25





    第12题答图


    解:(1)直线BD与⊙O相切.


    理由如下:如图,连接OD,∵OA=OD,∴∠ODA=∠DAB=∠B=30°,∴∠ODB=180°-∠ODA-∠DAB-∠B=180°-30°-30°-30°=90°,即OD⊥BD,∴直线BD与⊙O相切.


    (2)如图,连接CD,由(1)知,∠ODA=∠DAB=30°,


    ∴∠DOB=∠ODA+∠DAB=60°.又∵OC=OD,


    ∴△DOC是等边三角形,∴OA=OD=CD=5.


    又∵∠B=30°,∠ODB=90°,∴OB=2OD=10,


    ∴AB=OA+OB=5+10=15.


    13.如图24-2-26,已知AB是⊙O的直径,点C,D在⊙O上,点E在⊙O外,∠EAC=∠D=60°.


    (1)求∠ABC的度数;


    (2)求证:AE是⊙O的切线.


    解:(1)∵∠ABC与∠D都是eq \(AC,\s\up8(︵))所对的圆周角,


    ∴∠ABC=∠D=60°.


    (2)∵AB是⊙O的直径,∴∠ACB=90°,∴∠BAC=90°-∠ABC=30°,∴∠BAE=∠BAC+∠EAC=30°+60°=90°,即BA⊥AE,∴AE是⊙O的切线.





    图24-2-26





    图24-2-27


    14.如图24-2-27,已知AD为⊙O的直径,B为AD延长线上一点,BC与⊙O切于C点,∠A=30°.求证:(1)BD=CD;(2)△AOC≌△CDB.


    证明:(1)∵AD为⊙O的直径,∴∠ACD=90°.


    又∵∠A=30°,OA=OC=OD,∴∠ACO=∠A=30°,∠ODC=∠OCD=90°-∠ACO=60°.又∵BC与⊙O切于C点,∴∠OCB=90°,∴∠BCD=90°-∠OCD=30°,∴∠B=∠ODC-∠BCD=30°,


    ∴∠BCD=∠B,∴BD=CD.


    (2)∵∠A=∠ACO=∠BCD=∠B=30°,∴AC=BC,∴△AOC≌△CDB.





    图24-2-28


    15.如图24-2-28,△OAC中,以O为圆心、OA为半径作⊙O,作OB⊥OC交⊙O于点B,连接AB交OC于点D,∠CAD=∠CDA.


    (1)判断AC与⊙O的位置关系,并证明你的结论;


    (2)若OA=5,OD=1,求线段AC的长.


    解:(1)∵点A,B在⊙O上,∴OB=OA,∴∠OBA=∠OAB.∵∠CAD=∠CDA=∠BDO,∴∠CAD+∠OAB=∠BDO+∠OBA.∵BO⊥CO,


    ∴∠CAD+∠OAB=∠BDO+∠OBA=90°,即∠OAC=90°,∴AC是⊙O的切线.


    (2)设AC长为x.∵∠CAD=∠CDA,∴CD=AC,即CD长为x.由(1)知OA⊥AC,∴在Rt△OAC中,OA2+AC2=OC2,即52+x2=(1+x)2,解得x=12,即线段AC的长为12.





    16.如图24-2-29,⊙O的直径AB=6 cm,P是AB的延长线上的一点,过点P作⊙O的切线,切点为C,连接AC.


    (1)若∠CPA=30°,求PC的长;


    (2)若点P在AB的延长线上运动,∠CPA的平分线交AC于点M,你认为∠CMP的大小是否发生变化?若变化,请说明理由;若不变,求出∠CMP的值.





    图24-2-29





    第16题答图


    【解析】 (1)由PC是⊙O的切线知PC⊥OC,又∠CPA=30°,故只要知道OC即可求得PC的长;(2)在圆中,半径相等是证角相等的重要手段,此题只要在△APM中,求∠A+∠APM的大小即可.


    解:(1)如图所示,连接OC,∵PC是⊙O的切线,∴∠OCP=90°.∵∠CPA=30°,OC=eq \f(AB,2)=3,∴OP=2OC=6,∴PC=eq \r(OP2-OC2)=3eq \r(3).


    (2)∠CMP的大小不发生变化且∠CMP=45°.


    ∵PM是∠CPA的平分线,∴∠CPM=∠MPA.


    ∵OA=OC,∴∠A=∠ACO.在△APC中,∵∠A+∠ACP+∠CPA=180°,


    ∴2∠A+2∠MPA+90°=180°,∴∠A+∠MPA=45°,∴∠CMP=∠A+∠MPA=45°,即∠CMP的大小不发生变化且∠CMP=45°.








    相关试卷

    人教版九年级上册24.1.1 圆优秀课时练习: 这是一份人教版九年级上册24.1.1 圆优秀课时练习,共19页。试卷主要包含了选择题,解答题,填空题等内容,欢迎下载使用。

    初中数学人教版九年级上册24.2.2 直线和圆的位置关系优秀当堂检测题: 这是一份初中数学人教版九年级上册24.2.2 直线和圆的位置关系优秀当堂检测题,文件包含专题242点和圆直线和圆的位置关系测试卷-2022-2023学年九年级上册同步讲练解析版人教版docx、专题242点和圆直线和圆的位置关系测试卷-2022-2023学年九年级上册同步讲练原卷版人教版docx、专题242点和圆直线和圆的位置关系测试卷-2022-2023学年九年级上册同步讲练答题卡人教版docx等3份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。

    初中数学人教版九年级上册24.2.2 直线和圆的位置关系同步练习题: 这是一份初中数学人教版九年级上册24.2.2 直线和圆的位置关系同步练习题,共6页。试卷主要包含了 选择题, 填空题, 解答题等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        九年级数学上册24.2.2+直线和圆的位置关系同步测试+新人教版
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map