







所属成套资源:华师大版九年级数学上册全套课件
- 21.2 第1课时 二次根式的乘法与积的算术平方根 PPT课件 课件 12 次下载
- 21.3 二次根式的加减 PPT课件 课件 14 次下载
- 第21章 复习 PPT课件 课件 10 次下载
- 22.1 一元二次方程 PPT课件 课件 18 次下载
- 22.2 第1课时 直接开平方法和因式分解法 PPT课件 课件 12 次下载
华师大版九年级上册3. 二次根式的除法完美版ppt课件
展开
这是一份华师大版九年级上册3. 二次根式的除法完美版ppt课件,共18页。PPT课件主要包含了学习目标,a≥0,∣a∣,aa≥0,-aa<0,导入新课,观察与思考,二次根式的乘法,a≥0b≥0,如何化简二次根式等内容,欢迎下载使用。
1.掌握二次根式的除法法则及商的算术平方根的性质; (重点)
2.会利用除法法则进行二次根式的运算.(难点)
1.二次根式的两个基本性质:
算术平方根的积等于各个被开方数积的算术平方根.
积的算术平方根等于各因式的算术平方根的积.
3.二次根式乘法运算规律公式
关键:将被开方数因式分解或因数分解,使被开方数出现“完全平方数”或“偶次方因式”.
(2)
(3)
_______;
计算下列各式,观察计算结果,你能发现什么规律?
我们知道,两个二次根式可以进行乘法运算,那么,两个二次根式能否进行除法运算呢?
一般地,二次根式的除法法则
(a≥0,b>0)
两个二次根式相除,等于把被开方数相除,作为商的被开方数.
思考:等式中的a和b有没有条件的限制?
注意:(1) 这里的被开方数是一个整式(可以是多项式,也可以是单项式).
(2) 注意被开方数的取值范围.
1.与积的算术平方根的性质比较:
共同点:一个根号变成两个根号.
2.理解和记忆商的算术平方根要注意的问题:
提示:(1)要进行根式化简,关键是要搞清楚分式的分子和分母都乘什么,有时还要对分母进行化简;(2)有理化因式确定方法.如 有理化因式是它本身, 的有理化因式是 .
这种方法有的地方称之为分母有理化,即把分母中的根号化去的过程.
观察上面各数并思考:(1)你觉得这些数能否再化简,它们已经是最简二次根式了吗?(2)这些结果有什么共同特点,你认为一个二次根式满足什么条件就可以说它是最简二次根式了?
可以发现这些式子有如下两个特点: (1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式. 我们把满足上述两个条件的二次根式,叫做最简二次根式.
简记为:分母无根号,根号无分母
解题支招:为了能迅速准确地把二次根式化成最简二次根式,需要熟记1~100以内非二次根式的化简.如 等.
2.把下列各式分母有理化:
1. 利用商的算术平方根的性质化简二次根式.
2. 二次根式的除法有两种常用方法:
(2)把除法先写成分式的形式,再进行分母有理化运算.
相关课件
这是一份数学华师大版3. 二次根式的除法一等奖ppt课件,共19页。PPT课件主要包含了二次根式的乘法,如何化简二次根式,公式的逆用,区别取值范围不同,商的算术平方根,比较得出结论,1利用公式,完成习题212等内容,欢迎下载使用。
这是一份初中数学华师大版九年级上册3. 二次根式的除法课文内容课件ppt,共11页。PPT课件主要包含了总结规律,自探提示二,课堂练习,中考链接等内容,欢迎下载使用。
这是一份初中数学人教版九年级上册21.2.2 公式法教学ppt课件,共14页。PPT课件主要包含了课件说明等内容,欢迎下载使用。