|教案下载
搜索
    上传资料 赚现金
    1.1 第1课时 认识勾股定理2 教案
    立即下载
    加入资料篮
    1.1  第1课时 认识勾股定理2 教案01
    1.1  第1课时 认识勾股定理2 教案02
    还剩3页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北师大版1 探索勾股定理第1课时教案

    展开
    这是一份北师大版1 探索勾股定理第1课时教案,共5页。

    1.1 探索勾股定理


    第1课时 认识勾股定理


    第一环节:创设情境,引入新课


    内容:2002年世界数学家大会在我国北京召开,投影显示本届世界数学家大会的会标:


    会标中央的图案是一个与“勾股定理”有关的图形,数学家曾建议用“勾股定理”的图来作为与“外星人”联系的信号.今天我们就来一同探索勾股定理.(板书课题)


    第二环节:探索发现勾股定理


    1.探究活动一


    内容:投影显示如下地板砖示意图,引导学生从面积角度观察图形:














    问:你能发现各图中三个正方形的面积之间有何关系吗?


    学生通过观察,归纳发现:


    结论1 以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.


    意图:从观察实际生活中常见的地板砖入手,让学生感受到数学就在我们身边.通过对特殊情形的探究得到结论1,为探究活动二作铺垫.


    效果:1.探究活动一让学生独立观察,自主探究,培养独立思考的习惯和能力;2.通过探索发现,让学生得到成功体验,激发进一步探究的热情和愿望.


    2.探究活动二


    内容:由结论1我们自然产生联想:一般的直角三角形是否也具有该性质呢?


    (1)观察下面两幅图:




















    (2)填表:


    (3)你是怎样得到正方形C的面积的?与同伴交流.(学生可能会做出多种方法,教师应给予充分肯定.)

















    图1 图2 图3


    学生的方法可能有:


    方法一:


    如图1,将正方形C分割为四个全等的直角三角形和一个小正方形, .


    方法二:


    如图2,在正方形C外补四个全等的直角三角形,形成大正方形,用大正方形的面积减去四个直角三角形的面积,.


    方法三:


    如图3,正方形C中除去中间5个小正方形外,将周围部分适当拼接可成为正方形,如图3中两块红色(或两块绿色)部分可拼成一个小正方形,按此拼法,.


    (4)分析填表的数据,你发现了什么?


    学生通过分析数据,归纳出:


    结论2 以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.


    意图:探究活动二意在让学生通过观察、计算、探讨、归纳进一步发现一般直角三角形的性质.由于正方形C的面积计算是一个难点,为此设计了一个交流环节.


    效果:学生通过充分讨论探究,在突破正方形C的面积计算这一难点后得出结论2.


    3.议一议


    内容:(1)你能用直角三角形的边长,,来表示上图中正方形的面积吗?


    (2)你能发现直角三角形三边长度之间存在什么关系吗?


    (3)分别以5厘米、12厘米为直角边作出一个直角三角形,并测量斜边的长度.2中发现的规律对这个三角形仍然成立吗?


    勾股定理:直角三角形两直角边的平方和等于斜边的平方.如果用,,分别表示直角三角形的两直角边和斜边,那么.


    数学小史:勾股定理是我国最早发现的,中国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦,“勾股定理”因此而得名.(在西方文献中又称为毕达哥拉斯定理)


    意图:议一议意在让学生在结论2的基础上,进一步发现直角三角形三边关系,得到勾股定理.


    效果:1.让学生归纳表述结论,可培养学生的抽象概括能力及语言表达能力;2.通过作图培养学生的动手实践能力.


    第三环节:勾股定理的简单应用


    内容:


    例题 如图所示,一棵大树在一次强烈台风中于离地面10m处折断倒下,树顶落在离树根24m处. 大树在折断之前高多少?


    (教师板演解题过程)


    练习:


    1.基础巩固练习:


    求下列图形中未知正方形的面积或未知边的长度(口答):














    2.生活中的应用:


    小明妈妈买了一部29 in(74 cm)的电视机. 小明量了电视机的屏幕后,发现屏幕只有58 cm长和46 cm宽,他觉得一定是售货员搞错了.你同意他的想法吗?你能解释这是为什么吗?


    意图:练习第1题是勾股定理的直接运用,意在巩固基础知识.


    效果:例题和练习第2题是实际应用问题,体现了数学来源于生活,又服务于生活,意在培养学生“用数学”的意识.运用数学知识解决实际问题是数学教学的重要内容.





    第四环节:课堂小结


    内容:


    教师提问:


    1.这一节课我们一起学习了哪些知识和思想方法?


    2.对这些内容你有什么体会?与同伴进行交流.


    在学生自由发言的基础上,师生共同总结:


    1.知识:勾股定理:直角三角形两直角边的平方和等于斜边的平方.如果用a,b,c分别表示直角三角形的两直角边和斜边,那么.


    2.方法:(1) 观察—探索—猜想—验证—归纳—应用;


    (2)“割、补、拼、接”法.


    3.思想:(1) 特殊—一般—特殊;


    (2) 数形结合思想.


    意图:鼓励学生积极大胆发言,可增进师生、生生之间的交流、互动.


    效果:通过畅谈收获和体会,意在培养学生口头表达和交流的能力,增强不断反思总结的意识.


    第五环节:布置作业


    内容:布置作业:1.教科书习题1.1.


    2.观察下图,探究图中三角形的三边长是否满足?




















    意图:课后作业设计包括了三个层面:作业1是为了巩固基础知识而设计;作业2是为了扩展学生的知识面;作业3是为了拓广知识,进行课后探究而设计,通过此题可让学生进一步认识勾股定理的前提条件.


    效果:学生进一步加强对本课知识的理解和掌握.





    教学设计反思


    (一)设计理念


    依据“学生是学习的主体”这一理念,在探索勾股定理的整个过程中,本节课始终采用学生自主探索和与同伴合作交流相结合的方式进行主动学习.教师只在学生遇到困难时,进行引导或组织学生通过讨论来突破难点.


    (二)突出重点、突破难点的策略


    为了让学生在学习过程中自我发现勾股定理,本节课首先情景创设激发兴趣,再通过几个探究活动引导学生从探究等腰直角三角形这一特殊情形入手,自然过渡到探究一般直角三角形,学生通过观察图形,计算面积,分析数据,发现直角三角形三边的关系,进而得到勾股定理.


    A的面积


    (单位面积)
    B的面积


    (单位面积)
    C的面积


    (单位面积)
    左图
    右图
    相关教案

    初中数学北师大版八年级上册1 探索勾股定理第2课时教学设计及反思: 这是一份初中数学北师大版八年级上册1 探索勾股定理第2课时教学设计及反思,共5页。教案主要包含了学生起点分析,教学任务分析,教学过程,教学设计反思等内容,欢迎下载使用。

    初中数学北师大版八年级上册第一章 勾股定理1 探索勾股定理第1课时教案及反思: 这是一份初中数学北师大版八年级上册第一章 勾股定理1 探索勾股定理第1课时教案及反思,共5页。教案主要包含了知识与能力,过程与方法,情感态度价值观,教学重点,教学难点,教师准备,学生准备等内容,欢迎下载使用。

    初中数学北师大版八年级上册第一章 勾股定理1 探索勾股定理第1课时教案: 这是一份初中数学北师大版八年级上册第一章 勾股定理1 探索勾股定理第1课时教案,共7页。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        1.1 第1课时 认识勾股定理2 教案
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map