初中数学人教版九年级上册24.2.2 直线和圆的位置关系优秀综合训练题
展开24.2.2《切线的判定和性质》专项练习
一.选择题
1.如图,在以点O为圆心的两个同心圆中,大圆的弦AB与小圆相切,切点为C,若大圆的半径是13,AB=24,则小圆的半径是( )
A.4B.5C.6D.7
2.如图,AB、AC、BD是⊙O的切线,切点分别为P、C、D,若AB=5,AC=3,则BD的长是( )
A.1.5B.2C.2.5D.3
3.如图,⊙O中,CD是切线,切点是D,直线CO交⊙O于B、A,∠A=20°,则∠C的度数是( )
A.25°B.65°C.50°D.75°
4.如图,直线AB与⊙O相切于点A,⊙O的半径为1,若∠OBA=30°,则OB长为( )
A.1B.2C.D.2
5.如图,∠NAM=30°,O为边AN上一点,以点O为圆心,2为半径作⊙O,交AN边于D、E两点,则当⊙O与AM相切时,AD等于( )
A.4B.3C.2D.1
6.如图,矩形ABCD中,G是BC的中点,过A、D、G三点的圆O与边AB、CD分别交于点E、点F.
给出下列说法:
(1)AC与BD的交点是圆O的圆心;
(2)AF与DE的交点是圆O的圆心;
(3)BC与圆O相切,其中正确说法的个数是( )
A.0 B.1 C.2 D.3
7.已知⊙O的半径为5,直线EF经过⊙O上一点P(点E,F在点P的两旁),下列条件能判定直线EF与⊙O相切的是( )
A.OP=5B.OE=OF
C.O到直线EF的距离是4D.OP⊥EF
8.如图,网格中的每个小正方形的边长是1,点M,N,O均为格点,点N在⊙O上,若过点M作⊙O的一条切线MK,切点为K,则MK=( )
A.3B.2C.5D.
9.如图,AB是⊙O的直径,点P是⊙O外一点,PO交⊙O于点C,连接BC,PA.若∠P=40°,当∠B等于( )时,PA与⊙O相切.
A.20°B.25°C.30°D.40°
10.如图,在平面直角坐标系中,半径为2的圆P的圆心P的坐标为(﹣3,0),将圆P沿x轴的正方向平移,使得圆P与y轴相切,则平移的距离为( )
A.1B.3C.5D.1或5
11.如图,⊙O的半径为3,四边形ABCD是⊙O的内接四边形,∠A=60°,∠D=110°,的度数是70°,直线l与⊙O相切于点A.在没有滑动的情况下,将⊙O沿l向右滚动,使O点向右移动70π,则此时⊙O与直线l相切的切点所在的劣弧是( )
A.B.C.D.
12.如图,在等边△ABC中,点O在边AB上,⊙O过点B且分别与边AB、BC相交于点D、E、F是AC上的点,判断下列说法错误的是( )
A.若EF⊥AC,则EF是⊙O的切线
B.若EF是⊙O的切线,则EF⊥AC
C.若BE=EC,则AC是⊙O的切线
D.若BE=EC,则AC是⊙O的切线
13.如图,P为⊙O的直径BA延长线上的一点,PC与⊙O相切,切点为C,点D是⊙O上一点,连接PD.已知PC=PD=BC.
下列结论:(1)PD与⊙O相切;(2)四边形PCBD是菱形;(3)PO=CD;(4)弧AC=弧AD.
其中正确的个数为( )
A.1个B.2个C.3个D.4个
14.如图,直线l1∥l2,⊙O与l1和l2分别相切于点A和点B.直线MN与l1相交于M;与l2相交于N,⊙O的半径为1,∠1=60°,直线MN从如图位置向右平移,下列结论
①l1和l2的距离为2 ②MN=③当直线MN与⊙O相切时,∠MON=90°
④当AM+BN=时,直线MN与⊙O相切.正确的个数是( )
A.1B.2C.3D.4
15.如图,直线AB、CD相交于点O,∠AOD=30°,半径为1cm的⊙P的圆心在射线OA上,且与点O的距离为6cm.如果⊙P以1cm/s的速度沿由A向B的方向移动,那么( )秒钟后⊙P与直线CD相切.
A.4B.8C.4或6D.4或8
二.填空题
16.在平面直角坐标系中,点P的坐标为(﹣4,0),半径为1的动圆⊙P沿x轴正方向运动,若运动后⊙P与y轴相切,则点P的运动距离为 .
17.如图,直线PA是⊙O的切线,AB是过切点A的直径,连接PO交⊙O于点C,连接BC,若∠ABC=25°,则∠P的度数为 .
18.如图,已知PA、PB是⊙O的切线,A、B分别为切点,∠OAB=30°.
(1)∠APB= ;
(2)当OA=2时,AP= .
19.如图所示,直线y=x﹣2与x轴、y轴分别交于M,N两点,⊙O的半径为1,将⊙O以每秒1个单位的速度向右作平移运动,当移动 s时,直线MN恰好与圆O相切.
20.如图,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(﹣3,0),将⊙P沿x轴正方向以0.5个单位/秒的速度平移,使⊙P与y轴相切,则平移的时间为 秒.
21.已知,如图,AB是⊙O的直径,点P在BA的延长线上,弦CD交AB于E,连接OD、PC、BC,∠AOD=2∠ABC,∠P=∠D,过E作弦GF⊥BC交圆于G、F两点,连接CF、BG.
则下列结论:
①CD⊥AB;②PC是⊙O的切线;③OD∥GF;④弦CF的弦心距等于BG.
则其中正确的是 (只需填序号)
三.解答题
22.如图,AB是半圆O的直径,C是半圆O上的一点,CF切半圆O于点C,BD⊥CF于为点D,BD与半圆O交于点E.
(1)求证:BC平分∠ABD.
(2)若DC=8,BE=4,求圆的直径.
23.如图,一圆与平面直角坐标系中的x轴切于点A(8,0),与y轴交于点B(0,4),C(0,16),求该圆的直径.
24.如图,在△ABC中,AB=AC,∠A=30°,以AB为直径的⊙O交BC于点D,交AC于点E,连结DE,过点B作BP平行于DE,交⊙O于点P,连结EP、CP、OP.
(1)BD=DC吗?说明理由;
(2)求∠BOP的度数;
(3)求证:CP是⊙O的切线.
25.如图,▱ABCD中,⊙O过点A、C、D,交BC于E,连接AE,∠BAE=∠ACE.
(1)求证:AE=CD;
(2)求证:直线AB是⊙O的切线.
26.已知AB是⊙O的直径,AP是⊙O的切线,A是切点,BP与⊙O交于点C.
(1)如图①,若∠P=35°,求∠ABP的度数;
(2)如图②,若D为AP的中点,求证:直线CD是⊙O的切线.
27.如图(1),在△ABC中,∠ACB=90°,以AB为直径作⊙O;过点C作直线CD交AB的延长线于点D,且BD=OB,CD=CA.
(1)求证:CD是⊙O的切线.
(2)如图(2),过点C作CE⊥AB于点E,若⊙O的半径为8,∠A=30°,求线段BE.
28.如图,在△ABC中,∠C=90°,∠ABC的平分线BE交AC于点E,过点E作直线
BE的垂线交AB于点F,⊙O是△BEF的外接圆.
(1)求证:AC是⊙O的切线;
(2)过点E作EH⊥AB于点H,求证:EF平分∠AEH;
(3)求证:CD=HF.
29.如图,已知A是⊙O上一点,半径OC的延长线与过点A的直线交于点B,OC=BC,AC=OB.
(1)求证:AB是⊙O的切线;
(2)若∠ACD=45°,OC=2,求弦CD的长.
30.如图,AB是半径为2的⊙O的直径,直线m与AB所在直线垂直,垂足为C,OC=3,点P是⊙O上异于A、B的动点,直线AP、BP分别交m于M、N两点.
(1)当点C为MN中点时,连接OP,PC,判断直线PC与⊙O是否相切并说明理由.
(2)点P是⊙O上异于A、B的动点,以MN为直径的动圆是否经过一个定点,若是,请确定该定点的位置;若不是,请说明理由.
参考答案
1.B.
2.B.
3.C.
4.B.
5.C.
6.C.
7.D.
8.B.
9.B.
10.C.
12.C.
13.C.
14.D.
15.D.
16.答案为3或5.
17.答案为:40°.
18.答案为:60°.
(2)答案为:2.
19.答案为:2﹣或2+.
20.答案为2或10
21.答案为:①②④.
22.(1)证明:连结OC,如图,
∵CD为切线,
∴OC⊥CD,
∵BD⊥DF,
∴OC∥BD,
∴∠1=∠3,
∵OB=OC,
∴∠1=∠2,
∴∠2=∠3,
∴BC平分∠ABD;
(2)解:连结AE交OC于G,如图,
∵AB为直径,
∴∠AEB=90°,
∵OC∥BD,
∴OC⊥CD,
∴AG=EG,
易得四边形CDEG为矩形,
∴GE=CD=8,
∴AE=2EG=16,
在Rt△ABE中,AB==4,
即圆的直径为4.
23.解:过圆心O′作y轴的垂线,垂足为D,连接O′A,
∵O′D⊥BC,
∴D为BC中点,
∴BC=16﹣4=12,OD=6+4=10,
∵⊙O′与x轴相切,
∴O′A⊥x轴,
∴四边形OAO′D为矩形,
半径O′A=OD=10,
24.解:(1)BD=DC.理由如下:连接AD,
∵AB是直径,
∴∠ADB=90°,
∴AD⊥BC,
∵AB=AC,
∴BD=DC;
(2)∵AD是等腰△ABC底边上的中线,
∴∠BAD=∠CAD,
∴,
∴BD=DE.
∴BD=DE=DC,
∴∠DEC=∠DCE,
△ABC中,AB=AC,∠A=30°,
∴∠DCE=∠ABC=(180°﹣30°)=75°,
∴∠DEC=75°,
∴∠EDC=180°﹣75°﹣75°=30°,
∵BP∥DE,
∴∠PBC=∠EDC=30°,
∴∠ABP=∠ABC﹣∠PBC=75°﹣30°=45°,
∵OB=OP,
∴∠OBP=∠OPB=45°,
∴∠BOP=90°;
(3)设OP交AC于点G,如图,则∠AOG=∠BOP=90°,
在Rt△AOG中,∠OAG=30°,
∴=,
又∵==,
∴=,
∴=,
又∵∠AGO=∠CGP,
∴△AOG∽△CPG,
∴∠GPC=∠AOG=90°,
∴OP⊥PC,
∴CP是⊙O的切线;
25.解:(1)∵四边形ABCD是平行四边形
∴AB=CD,∠B=∠ADC
∵四边形ADCE是⊙O内接四边形
∴∠ADC+∠AEC=180°
∵∠AEC+∠AEB=180°
∴∠ADC=∠AEB
∴∠B=∠AEB
∴AE=CD
(2)如图:连接AO,并延长AO交⊙O交于点F,连接EF.
∵AF是直径
∴∠AEF=90°
∴∠AFE+∠EAF=90°
∵∠BAE=∠ECA,∠AFE=∠ACE
∴∠AFE=∠BAE
∴∠BAE+∠EAF=90°
∴∠BAF=90°且AO是半径
∴直线AB是⊙O的切线
26.(1)解:∵AB是⊙O的直径,AP是⊙O的切线,
∴AB⊥AP,
∴∠BAP=90°;
又∵∠P=35°,
∴∠AB=90°﹣35°=55°.
(2)证明:如图,连接OC,OD、AC.
∵AB是⊙O的直径,
∴∠ACB=90°(直径所对的圆周角是直角),
∴∠ACP=90°;
又∵D为AP的中点,
∴AD=CD(直角三角形斜边上的中线等于斜边的一半);
在△OAD和△OCD中,
,
∴△OAD≌△OCD(SSS),
∴∠OAD=∠OCD(全等三角形的对应角相等);
又∵AP是⊙O的切线,A是切点,
∴AB⊥AP,
∴∠OAD=90°,
∴∠OCD=90°,即直线CD是⊙O的切线.
27.(1)证明:如图1,连结OC,
∵点O为直角三角形斜边AB的中点,
∴OC=OA=OB.
∴点C在⊙O上,
∵BD=OB,
∴AB=DO,
∵CD=CA,
∴∠A=∠D,
∴△ACB≌△DCO,
∴∠DCO=∠ACB=90°,
∴CD是⊙O的切线;
(2)解:如图2,在Rt△ABC中,BC=ABsin∠A=2×8×sin30°=8,
∵∠ABC=90°﹣∠A=90°﹣30°=60°,
∴BE=BCcs60°=8×=4.
28.(1)证明:(1)如图,连接OE.
∵BE⊥EF,∴∠BEF=90°,
∴BF是圆O的直径,
∴OB=OE,
∴∠OBE=∠OEB,
∵BE平分∠ABC,
∴∠CBE=∠OBE,
∴∠OEB=∠CBE,
∴OE∥BC,
∴∠AEO=∠C=90°,
∴AC是⊙O的切线;
(2)证明:∵∠C=∠BHE=90°,∠EBC=∠EBA,
∴BEC=∠BEH,
∵BF是⊙O是直径,
∴∠BEF=90°,
∴∠FEH+∠BEH=90°,∠AEF+∠BEC=90°,
∴∠FEH=∠FEA,
∴FE平分∠AEH.
(3)证明:如图,连结DE.
∵BE是∠ABC的平分线,EC⊥BC于C,EH⊥AB于H,
∴EC=EH.
∵∠CDE+∠BDE=180°,∠HFE+∠BDE=180°,
∴∠CDE=∠HFE,
∵∠C=∠EHF=90°,
∴△CDE≌△HFE(AAS),
∴CD=HF,
29.解:(1)如图,连接OA;
∵OC=BC,AC=OB,
∴OC=BC=AC=OA.
∴△ACO是等边三角形.
∴∠O=∠OCA=60°,
∵AC=BC,
∴∠CAB=∠B,
又∠OCA为△ACB的外角,
∴∠OCA=∠CAB+∠B=2∠B,
∴∠B=30°,又∠OAC=60°,
∴∠OAB=90°,
∴AB是⊙O的切线;
(2)解:作AE⊥CD于点E,
∵∠O=60°,
∴∠D=30°.
∵∠ACD=45°,AC=OC=2,
∴在Rt△ACE中,CE=AE=;
∵∠D=30°,
∴AD=2,
∴DE=AE=,
∴CD=DE+CE=+.
30.解:(1)直线PC与⊙O相切,
理由是:如图1,∵AC⊥MN,
∴∠ACM=90°,
∴∠A+∠AMC=90°,
∵AB是⊙O的直径,
∴∠APB=∠NPM=90°,
∴∠PNM+∠AMC=90°=∠A+∠ABP,
∴∠ABP=∠AMC,
∵OP=OB,
∴∠ABP=∠OPB,
Rt△PMN中,C为MN的中点,
∴PC=CN,
∴∠PNM=∠NPC,
∴∠OPC=∠OPB+∠NPC=∠ABP+∠PNM=∠AMC+∠PNM=90°,
即OP⊥PC,
∴直线PC与⊙O相切;
(2)如图2,设该圆与AC的交点为D,连接DM、DN,
∵MN为直径,
∴∠MDN=90°,
则∠MDC+∠NDC=90°,
∵∠DCM=∠DCN=90°,
∴∠MDC+∠DMC=90°,
∴∠NDC=∠DMC,
则△MDC∽△DNC,
∴,即DC2=MC•NC
∵∠ACM=∠NCB=90°,∠A=∠BNC,
∴△ACM∽△NCB,
∴,即MC•NC=AC•BC;
即AC•BC=DC2,
∵AC=AO+OC=2+3=5,BC=3﹣2=1,
∴DC2=5,
∴DC=,
∵MN⊥DD',
∴D'C=DC=,
∴以MN为直径的一系列圆经过两个定点D和D',此定点在C的距离都是.
人教版九年级数学上册 24.20 切线性质和判定定理(巩固篇)(专项练习): 这是一份人教版九年级数学上册 24.20 切线性质和判定定理(巩固篇)(专项练习),共35页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
人教版九年级上册第二十四章 圆24.2 点和圆、直线和圆的位置关系24.2.2 直线和圆的位置关系精品第2课时课后练习题: 这是一份人教版九年级上册第二十四章 圆24.2 点和圆、直线和圆的位置关系24.2.2 直线和圆的位置关系精品第2课时课后练习题,文件包含人教版数学九年级上册2422《切线的判定与性质》第2课时作业解析版docx、人教版数学九年级上册2422《切线的判定与性质》第2课时作业原卷版docx等2份试卷配套教学资源,其中试卷共45页, 欢迎下载使用。
人教版数学九年级上册专项培优练习十五《切线的性质与判定》(含答案): 这是一份人教版数学九年级上册专项培优练习十五《切线的性质与判定》(含答案),共13页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。