|学案下载
终身会员
搜索
    上传资料 赚现金
    2020版《微点教程》高考人教A版理科数学一轮复习文档:第十章第六节 离散型随机变量及其分布 学案
    立即下载
    加入资料篮
    2020版《微点教程》高考人教A版理科数学一轮复习文档:第十章第六节 离散型随机变量及其分布 学案01
    2020版《微点教程》高考人教A版理科数学一轮复习文档:第十章第六节 离散型随机变量及其分布 学案02
    2020版《微点教程》高考人教A版理科数学一轮复习文档:第十章第六节 离散型随机变量及其分布 学案03
    还剩13页未读, 继续阅读
    下载需要15学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2020版《微点教程》高考人教A版理科数学一轮复习文档:第十章第六节 离散型随机变量及其分布 学案

    展开

     

     

    第六节 离散型随机变量及其分布,2019考纲考题考情

    1.随机变量的有关概念,如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量;若变量的所有值可以一一列出,这样的随机变量叫做离散型随机变量。

    2.离散型随机变量的分布列,(1)概念,若离散型随机变量X可能取的不同值为x1x2xixnX取每一个值xi(i1,2,3n)的概率P(Xxi)pi,则称表,

    X

    x1

    x2

    xi

    xn

    P

    p1

    p2

    pi

    pn

    为离散型随机变量X的概率分布列,简称为X的分布列,有时也用等式P(Xxi)pii1,2n表示X的分布列。

    (2)性质,pi0i1,2,3n

    i1,3.常见离散型随机变量的分布列,(1)两点分布,

    X

    0

    1

    P

    1p

    p

    若随机变量X的分布列具有上表的形式,就称X服从两点分布,并称pP(X1)成功概率

    (2)超几何分布,在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则P(Xk)(k0,1,2m),其中mmin{Mn},且nNMNnMNN*,

    X

    0

    1

    m

    P

    如果随机变量X的分布列具有上表的形式,则称随机变量X服从超几何分布。

    1.随机变量的线性关系,X是随机变量,YaXbab是常数,则Y也是随机变量。

    2.分布列性质的两个作用

    (1)利用分布列中各事件概率之和为1可求参数的值。

    (2)随机变量ξ所取的值分别对应的事件是两两互斥的,利用这一点可以求相关事件的概率。

    一、走进教材,                    

    1.(选修23P49AT4改编)设随机变量X的分布列如下:,

    X

    1

    2

    3

    4

    5

    P

    p

    p(  )

    A.  B.  C.  D.

    解析 由分布列的性质,p1,所以p1

    。故选C

    答案 C

    2.(选修23P472改编)在含有3件次品的10件产品中,任取4件,则取到次品数X的分布列为________

    解析 由题意,X服从超几何分布,其中N10M3n4,所以分布列为P(Xk)k0,1,2,3。即

    X

    0

    1

    2

    3

    P

    答案 

    X

    0

    1

    2

    3

    P

    二、走出误区

    微提醒:随机变量的概念不清;超几何分布类型掌握不准;分布列的性质不清致误。

    3.袋中有3个白球、5个黑球,从中任取两个,可以作为随机变量的是(  )

    A.至少取到1个白球   B.至多取到1个白球

    C.取到白球的个数   D.取到的球的个数

    解析 AB两项表述的都是随机事件,D项是确定的值2,并不随机;C项是随机变量,可能取值为0,1,2。故选C

    答案 C

    4.一盒中有12个乒乓球,其中9个新的、3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X是一个随机变量,则P(X4)的值为(  )

    A.  B.  C.  D.

    解析 {X4}表示从盒中取了2个旧球,1个新球,故P(X4)。故选C

    答案 C

    5.设某项试验的成功率是失败率的2倍,用随机变量X去描述1次试验的成功次数,则P(X0)________

    解析 由已知得X的所有可能取值为0,1,且P(X1)2P(X0),由P(X1)P(X0)1,得P(X0)

    答案 

    考点一   离散型随机变量分布列的性质

    【例1】 (1)离散型随机变量X的概率分布规律为P(Xn)(n1,2,3,4),其中a是常数,则P的值为(  )

    A.  B.  C.  D.

    (2)设离散型随机变量X的分布列为

    X

    0

    1

    2

    3

    4

    P

    0.2

    0.1

    0.1

    0.3

    m

    2X1的分布列。

    (1)解析 因为P(Xn)(n1,2,3,4),所以1,所以a,所以PP(X1)P(X2)××。故选D

    答案 D

    (2)解 由分布列的性质知,

    020.10.10.3m1,得m0.3

    列表为

    X

    0

    1

    2

    3

    4

    2X1

    1

    3

    5

    7

    9

    从而2X1的分布列为

    2X1

    1

    3

    5

    7

    9

    P

    0.2

    0.1

    0.1

    0.3

    0.3

     

    1利用分布列中各概率之和为1可求参数的值,此时要注意检验,以保证每个概率值均为非负数。

    2.求随机变量在某个范围内的概率时,根据分布列,将所求范围内各随机变量对应的概率相加即可,其依据是互斥事件的概率加法公式。

     

    【变式训练】 (1)若题(2)中条件不变,求随机变量η|X1|的分布列;

    (2)若题(2)中条件不变,求随机变量ηX2的分布列。

    解 (1)由题(2)m0.3,列表为

    X

    0

    1

    2

    3

    4

    |X1|

    1

    0

    1

    2

    3

    所以P(η1)P(X0)P(X2)0.20.10.3P(η0)P(X1)0.1P(η2)P(X3)0.3P(η3)P(X4)0.3

    η|X1|的分布列为

    η

    0

    1

    2

    3

    P

    0.1

    0.3

    0.3

    0.3

    (2)依题意知η的值为0,1,4,9,16

    列表为

    X

    0

    1

    2

    3

    4

    X2

    0

    1

    4

    9

    16

    从而ηX2的分布列为

    η

    0

    1

    4

    9

    16

    P

    0.2

    0.1

    0.1

    0.3

    0.3

     

    考点二  离散型随机变量分布列的求法

    【例2】 (2019·河南安阳一模)某公司为了准确把握市场,做好产品计划,特对某产品做了市场调查:先销售该产品50天,统计发现每天的销售量x分布在[50,100)内,且销售量x的分布频率

    f(x)

    (1)a的值并估计销售量的平均数;

    (2)若销售量大于或等于70,则称该日畅销,其余为滞销。在畅销日中用分层抽样的方法随机抽取8天,再从这8天中随机抽取3天进行统计,设这3天来自X个组,求随机变量X的分布列及数学期望(将频率视为概率)

    解 (1)由题意知

    解得5n9n可取5,6,7,8,9

    结合f(x)

    1,则a0.15

    可知销售量分别在[50,60)[60,70)[70,80)[80,90)[90,100)内的频率分别是0.1,0.1,0.2,0.3,0.3

    所以销售量的平均数为55×0.165×0.175×0.285×0.395×0.381

    (2)销售量分布在[70,80)[80,90)[90,100)内的频率之比为233,所以在各组抽取的天数分别为2,3,3

    X的所有可能取值为1,2,3

    P(X1)

    P(X3)

    P(X2)1

    X的分布列为

    X

    1

    2

    3

    P

    数学期望E(X)1×2×3×

     

    求离散型随机变量X的分布列的步骤

    1.理解X的意义,写出X可能取的全部值;

    2.求X取每个值的概率;

    3.写出X的分布列。

    求离散型随机变量的分布列的关键是求随机变量所取值对应的概率,在求解时,要注意应用计数原理、古典概型等知识。

    【变式训练】 (2019·郑州预测)为了减少雾霾,还城市一片蓝天,某市政府于124日到1231日在主城区实行车辆限号出行政策,鼓励民众不开车低碳出行。市政府为了了解民众低碳出行的情况,统计了该市甲、乙两个单位各200名员工125日到1214日共10天的低碳出行的人数,画出茎叶图如图所示:

    (1)若甲单位数据的平均数是122,求x

    (2)现从图中的数据中任取4天的数据(甲、乙两个单位中各取2),记抽取的4天中甲、乙两个单位员工低碳出行的人数不低于130的天数分别为ξ1ξ2,令ηξ1ξ2,求η的分布列。

    解 (1)由题意知

    122,解得x8

    (2)由题得ξ1的所有可能取值为0,1,2ξ2的所有可能取值为0,1,2,因为ηξ1ξ2,所以随机变量η的所有可能取值为0,1,2,3,4

    因为甲单位低碳出行的人数不低于130的天数为3,乙单位低碳出行的人数不低于130的天数为4,所以

    P(η0)

    P(η1)

    P(η2)

    P(η3)

    P(η4)

    所以η的分布列为

    η

    0

    1

    2

    3

    4

    P

    考点三  超几何分布

    【例3】 (2018·天津高考)已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16。现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查。

    (1)应从甲、乙、丙三个部门的员工中分别抽取多少人?

    (2)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查。

    X表示抽取的3人中睡眠不足的员工人数,求随机变量X的分布列与数学期望;

    A为事件抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工,求事件A发生的概率。

    解 (1)由已知,甲、乙、丙三个部门的员工人数之比为322,由于采用分层抽样的方法从中抽取7人,因此应从甲、乙、丙三个部门的员工中分别抽取3人,2人,2人。

    (2)随机变量X的所有可能取值为0,1,2,3

    P(Xk)(k0,1,2,3)

    所以随机变量X的分布列为

    X

    0

    1

    2

    3

    P

    随机变量X的数学期望E(X)0×1×2×3×

    设事件B抽取的3人中,睡眠充足的员工有1人,睡眠不足的员工有2;事件C抽取的3人中,睡眠充足的员工有2人,睡眠不足的员工有1,则ABC,且BC互斥。由知,P(B)P(X2)P(C)P(X1),故P(A)P(BC)P(X2)P(X1)。所以,事件A发生的概率为

     

    1超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数。

    2.超几何分布的特征是:(1)考察对象分两类;(2)已知各类对象的个数;(3)从中抽取若干个个体,考查某类个体个数X的概率分布。

    3.超几何分布主要用于抽检产品、摸不同类别的小球等概率模型,其实质是古典概型。

    【变式训练】 (2018·河南豫南九校二模)为创建国家级文明城市,某城市号召出租车司机在高考期间至少进行一次爱心送考,该城市某出租车公司共200名司机,他们进行爱心送考的次数统计如图所示。

    (1)求该出租车公司的司机进行爱心送考的人均次数;

    (2)从这200名司机中任选两人,设这两人进行送考次数之差的绝对值为随机变量X,求X的分布列及数学期望。

    解 (1)由统计图得200名司机中送考1次的有20人,

    送考2次的有100人,送考3次的有80人,

    所以该出租车公司的司机进行爱心送考的人均次数为2.3

    (2)从该公司任选两名司机,记这两人中一人送考1次,另一人送考2为事件A这两人中一人送考2次,另一人送考3为事件B

    这两人中一人送考1次,另一人送考3为事件C这两人送考次数相同为事件D

    由题意知X的所有可能取值为0,1,2

    P(X1)P(A)P(B)

    P(X2)P(C)

    P(X0)P(D)

    所以X的分布列为

    X

    0

    1

    2

    P

    E(X)0×1×2×

     

     

     

     

    1(配合例2使用)某城市为鼓励人们绿色出行,乘坐地铁,地铁公司决定按照乘客经过地铁站的数量实施分段优惠政策,不超过30站的地铁票价如下表:

    乘坐站数x

    0<x10

    10<x20

    20<x30

    票价()

    3

    6

    9

    现有甲、乙两位乘客同时从起点乘坐同一辆地铁,已知他们乘坐地铁都不超过30站。甲、乙乘坐不超过10站的概率分别为;甲、乙乘坐超过20站的概率分别为

    (1)求甲、乙两人付费相同的概率;

    (2)设甲、乙两人所付费用之和为随机变量X,求X的分布列和数学期望。

    解 (1)由题意知甲乘坐超过10站且不超过20站的概率为1

    乙乘坐超过10站且不超过20站的概率为1

    甲、乙两人付费相同为事件A

    P(A)×××

    所以甲、乙两人付费相同的概率是

    (2)由题意可知X的所有可能取值为6,9,12,15,18

    P(X6)×

    P(X9)××

    P(X12)×××

    P(X15)××

    P(X18)×

    因此X的分布列如下:

    X

    6

    9

    12

    15

    18

    P

    所以X的数学期望E(X)6×9×12×15×18×

    2(配合例3使用)为了调查高中生恋家(在家里感到最幸福)是否与国别有关,设计了在家、朋友聚集的地方、个人空间三个场所中,感到最幸福的场所是哪里?这个问题,并从中国某城市的高中生中随机选取了55人,从美国某城市的高中生中随机选取了45人进行答题。中国高中生的答题情况是:选择家的人数占,选择朋友聚集的地方的人数占,选择个人空间的人数占。美国高中生的答题情况是:选择家的人数占,选择朋友聚集的地方的人数占,选择个人空间的人数占。根据调查结果制作了如下的2×2列联表。

     

    (1)请将2×2列联表补充完整,并判断能否有95%的把握认为恋家与国别有关;

    (2)55名中国高中生中以是否恋家为标准采用分层抽样的方法随机选取了5人,再从这5人中随机选取2人。若所选的2人中恋家的人数为X,求随机变量X的分布列及期望。

    附:K2,其中nabcd

    P(K2k0)

    0.050

    0.025

    0.010

    0.001

    k0

    3.841

    5.024

    6.635

    10.828

    解 (1)补充2×2列联表如下:

    所以K2

    4.628>3.841

    所以有95%的把握认为恋家与国别有关。

    (2)依题意得,选取的5个人中有2人认为在家里感到最幸福,3人认为在其他场所感到最幸福,则X的可能取值为0,1,2

    P(X0)P(X1)

    P(X2)

    所以X的分布列为

    X

    0

    1

    2

    P

    所以E(X)0×1×2×

     

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2020版《微点教程》高考人教A版理科数学一轮复习文档:第十章第六节 离散型随机变量及其分布 学案
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map