|学案下载
终身会员
搜索
    上传资料 赚现金
    2020版高考理科数学(人教版)一轮复习讲义:第三章第三节导数的综合应用第一课时 利用导数解不等式
    立即下载
    加入资料篮
    2020版高考理科数学(人教版)一轮复习讲义:第三章第三节导数的综合应用第一课时 利用导数解不等式01
    2020版高考理科数学(人教版)一轮复习讲义:第三章第三节导数的综合应用第一课时 利用导数解不等式02
    2020版高考理科数学(人教版)一轮复习讲义:第三章第三节导数的综合应用第一课时 利用导数解不等式03
    还剩6页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2020版高考理科数学(人教版)一轮复习讲义:第三章第三节导数的综合应用第一课时 利用导数解不等式

    展开
    
    第三节导数的综合应用
    第一课时 利用导数解不等式
    考法一 f(x)与f′(x)共存的不等式问题

    f′(x)g(x)±f(x)g′(x)型
    [典例] (1)定义在R上的函数f(x),满足f(1)=1,且对任意x∈R都有f′(x)<,则不等式f(lg x)>的解集为__________.
    (2)设f(x),g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(-3)=0,则不等式f(x)g(x)<0的解集为__________________.
    [解析] (1)由题意构造函数g(x)=f(x)-x,
    则g′(x)=f′(x)-<0,
    所以g(x)在定义域内是减函数.
    因为f(1)=1,所以g(1)=f(1)-=,
    由f(lg x)>,得f(lg x)-lg x>.
    即g(lg x)=f(lg x)-lg x>=g(1),
    所以lg x<1,解得0<x<10.
    所以原不等式的解集为(0,10).
    (2)借助导数的运算法则,f′(x)g(x)+f(x)g′(x)>0⇔[f(x)g(x)]′>0,所以函数y=f(x)g(x)在(-∞,0)上单调递增.又由题意知函数y=f(x)g(x)为奇函数,所以其图象关于原点对称,且过点(-3,0),(3,0).数形结合可求得不等式f(x)g(x)<0的解集为(-∞,-3)∪(0,3).
    [答案] (1)(0,10) (2)(-∞,-3)∪(0,3)


    (1)对于不等式f′(x)+g′(x)>0(或<0) ,构造函数F(x)=f(x)+g(x).
    (2)对于不等式f′(x)-g′(x)>0(或<0) ,构造函数F(x)=f(x)-g(x).
    特别地,对于不等式f′(x)>k(或<k)(k≠0),构造函数F(x)=f(x)-kx.
    (3)对于不等式f′(x)g(x)+f(x)g′(x)>0(或<0),构造函数F(x)=f(x)g(x).
    (4)对于不等式f′(x)g(x)-f(x)g′(x)>0(或<0),构造函数F(x)=(g(x)≠0).  

    xf′(x)±nf(x)(n为常数)型
    [典例] (1)设f′(x)是奇函数f(x)(x∈R)的导函数,f(-1)=0, 当x>0时,xf′(x)-f(x)<0,则使得f(x)>0成立的x的取值范围是(  )
    A.(-∞,-1)∪(0,1)    B.(-1,0)∪(1,+∞)
    C.(-∞,-1)∪(-1,0) D.(0,1)∪(1,+∞)
    (2)设函数f(x)在R上的导函数为f′(x),且2f(x)+xf′(x)>x2,则下列不等式在R上恒成立的是(  )
    A.f(x)>0 B.f(x)<0
    C.f(x)>x D.f(x)<x
    [解析] (1)令g(x)=,则g′(x)=.
    由题意知,当x>0时,g′(x)<0,
    ∴g(x)在(0,+∞)上是减函数.
    ∵f(x)是奇函数,f(-1)=0,
    ∴f(1)=-f(-1)=0,
    ∴g(1)=f(1)=0,
    ∴当x∈(0,1)时,g(x)>0,从而f(x)>0;
    当x∈(1,+∞)时,g(x)<0,从而f(x)<0.
    又∵f(x)是奇函数,
    ∴当x∈(-∞,-1)时,f(x)>0;
    当x∈(-1,0)时,f(x)<0.
    综上,所求x的取值范围是(-∞,-1)∪(0,1).
    (2)令g(x)=x2f(x)-x4,则g′(x)=2xf(x)+x2f′(x)-x3=x[2f(x)+xf′(x)-x2].
    当x>0时,g′(x)>0,∴g(x)>g(0),
    即x2f(x)-x4>0,从而f(x)>x2>0;
    当x<0时,g′(x)<0,∴g(x)>g(0),
    即x2f(x)-x4>0,从而f(x)>x2>0;
    当x=0时,由题意可得2f(0)>0,∴f(0)>0.
    综上可知,f(x)>0.
    [答案] (1)A (2)A

    (1)对于xf′(x)+nf(x)>0型,构造F(x)=xnf(x),则F′(x)=xn-1[xf′(x)+nf(x)](注意对xn-1的符号进行讨论),特别地,当n=1时,xf′(x)+f(x)>0,构造F(x)=xf(x),则F′(x)=xf′(x)+f(x)>0.
    (2)对于xf′(x)-nf(x)>0(x≠0)型,构造F(x)=,则F′(x)=(注意对xn+1的符号进行讨论),特别地,当n=1时,xf′(x)-f(x)>0,构造F(x)=,则F′(x)=>0.  

    f′(x)±λf(x)(λ为常数)型
    [典例] (1)已知f(x)为R上的可导函数,且∀x∈R,均有f(x)>f′(x),则有(  )
    A.e2 019f(-2 019)<f(0),f(2 019)>e2 019f(0)
    B.e2 019f(-2 019)<f(0),f(2 019)<e2 019f(0)
    C.e2 019f(-2 019)>f(0),f(2 019)>e2 019f(0)
    D.e2 019f(-2 019)>f(0),f(2 019)<e2 019f(0)
    (2)已知定义在R上的函数f(x)满足f(x)+2f′(x)>0恒成立,且f(2)=(e为自然对数的底数),则不等式exf(x)-e>0的解集为________.
    [解析] (1)构造函数h(x)=,则h′(x)=<0,即h(x)在R上单调递减,故h(-2 019)>h(0),即>⇒e2 019f(-2 019)>f(0);同理,h(2 019)<h(0),即f(2 019)<e2 019f(0),故选D.
    (2)由f(x)+2f′(x)>0得2>0,可构造函数h(x)=ef(x),则h′(x)=e [f(x)+2f′(x)]>0,所以函数h(x)=ef(x)在R上单调递增,且h(2)=ef(2)=1.不等式exf(x)-e>0等价于ef(x)>1,即h(x)>h(2)⇒x>2,所以不等式exf(x)-e>0的解集为(2,+∞).
    [答案] (1)D (2)(2,+∞)

    (1)对于不等式f′(x)+f(x)>0(或<0),构造函数F(x)=exf(x).
    (2)对于不等式f′(x)-f(x)>0(或<0),构造函数F(x)=.


    [典例] 已知函数f(x)=ax+ln x+1,若对任意的x>0,f(x)≤xe2x恒成立,求实数a的取值范围.
    [解] 法一:构造函数法
    设g(x)=xe2x-ax-ln x-1(x>0),对任意的x>0,f(x)≤xe2x恒成立,等价于g(x)≥0在(0,+∞)上恒成立,则只需g(x)min≥0即可.
    因为g′(x)=(2x+1)e2x-a-,
    令h(x)=(2x+1)e2x-a-(x>0),
    则h′(x)=4(x+1)e2x+>0,
    所以h(x)=g′(x)在(0,+∞)上单调递增,
    因为当x―→0时,h(x)―→-∞,当x―→+∞时,h(x)―→+∞,
    所以h(x)=g′(x)在(0,+∞)上存在唯一的零点x0,
    满足(2x0+1)e2x0-a-=0,
    所以a=(2x0+1)e2x0-,且g(x)在(0,x0)上单调递减,在(x0,+∞)上单调递增,
    所以g(x)min=g(x0)=x0e2x0-ax0-ln x0-1=-2xe2x0-ln x0,
    则由g(x)min≥0,得2xe2x0+ln x0≤0,
    此时0<x0<1,e2x0≤-,
    所以2x0+ln(2x0)≤ln(-ln x0)+(-ln x0),
    设S(x)=x+ln x(x>0),则S′(x)=1+>0,
    所以函数S(x)在(0,+∞)上单调递增,
    因为S(2x0)≤S(-ln x0),
    所以2x0≤-ln x0即e2x0≤,
    所以a=(2x0+1)e2x0-≤(2x0+1)·-=2,
    所以实数a的取值范围为(-∞,2].
    法二:分离参数法
    因为f(x)=ax+ln x+1,所以对任意的x>0,f(x)≤xe2x恒成立,等价于a≤e2x-在(0,+∞)上恒成立.
    令m(x)=e2x-(x>0),则只需a≤m(x)min即可,则m′(x)=,
    再令g(x)=2x2e2x+ln x(x>0),则g′(x)=4(x2+x)e2x+>0,所以g(x)在(0,+∞)上单调递增,
    因为g=-2ln 2<0,g(1)=2e2>0,
    所以g(x)有唯一的零点x0,且<x0<1,
    所以当0<x<x0时,m′(x)<0,当x>x0时,m′(x)>0,
    所以m(x)在(0,x0)上单调递减,在(x0,+∞)上单调递增,
    因为2xe2x0+ln x0=0,
    所以ln 2+2ln x0+2x0=ln(-ln x0),
    即ln(2x0)+2x0=ln(-ln x0)+(-ln x0),
    设s(x)=ln x+x(x>0),则s′(x)=+1>0,
    所以函数s(x)在(0,+∞)上单调递增,
    因为s(2x0)=s(-ln x0),
    所以2x0=-ln x0,即e2x0=,
    所以m(x)≥m(x0)=e2x0-=--=2,则有a≤2,
    所以实数a的取值范围为(-∞,2].

    求解不等式恒成立问题的方法
    (1)构造函数分类讨论:遇到f(x)≥g(x)型的不等式恒成立问题时,一般采用作差法,构造“左减右”的函数h(x)=f(x)-g(x) 或“右减左”的函数u(x)=g(x)-f(x),进而只需满足h(x)min≥0或u(x)max≤0,将比较法的思想融入函数中,转化为求解函数最值的问题,适用范围较广,但是往往需要对参数进行分类讨论.
    (2)分离函数法:分离参数法的主要思想是将不等式变形成一个一端是参数a,另一端是变量表达式v(x)的不等式后,应用数形结合思想把不等式恒成立问题转化为水平直线y=a与函数y=v(x)图象的交点个数问题来解决.  
    [过关训练]
    (2019·陕西教学质量检测)设函数f(x)=ln x+,k∈R.
    (1)若曲线y=f(x)在点(e,f(e))处的切线与直线x-2=0垂直,求f(x)的单调性和极小值(其中e为自然对数的底数);
    (2)若对任意的x1>x2>0,f(x1)-f(x2)<x1-x2恒成立,求k的取值范围.
    解:(1)由条件得f′(x)=-(x>0),
    ∵曲线y=f(x)在点(e,f(e))处的切线与直线x-2=0垂直,
    ∴f′(e)=0,即-=0,得k=e,
    ∴f′(x)=-=(x>0),
    由f′(x)<0得0<x<e,由f′(x)>0得x>e,
    ∴f(x)在(0,e)上单调递减,在(e,+∞)上单调递增.
    当x=e时,f(x)取得极小值,且f(e)=ln e+=2.
    ∴f(x)的极小值为2.
    (2)由题意知,对任意的x1>x2>0,f(x1)-x1<f(x2)-x2恒成立,
    设h(x)=f(x)-x=ln x+-x(x>0),
    则h(x)在(0,+∞)上单调递减,
    ∴h′(x)=--1≤0在(0,+∞)上恒成立,
    即当x>0时,k≥-x2+x=-2+恒成立,
    ∴k≥.故k的取值范围是.
    考法三 可化为不等式恒成立问题

    [典例] 已知函数f(x)=x3+x2+ax.
    (1)若函数f(x)在区间[1,+∞)上单调递增,求实数a的最小值;
    (2)若函数g(x)=,对∀x1∈,∃x2∈,使f′(x1)≤g(x2)成立,求实数a的取值范围.
    [解] (1)由题设知f′(x)=x2+2x+a≥0在[1,+∞)上恒成立,即a≥-(x+1)2+1在[1,+∞)上恒成立,
    而函数y=-(x+1)2+1在[1,+∞)单调递减,则ymax=-3,∴a≥-3,∴a的最小值为-3.
    (2)“对∀x1∈,∃x2∈,使f′(x1)≤g(x2)成立”等价于“当x∈时,f′(x)max≤g(x)max”.
    ∵f′(x)=x2+2x+a=(x+1)2+a-1在上单调递增,
    ∴f′(x)max=f′(2)=8+a.
    而g′(x)=,由g′(x)>0,得x<1,
    由g′(x)<0,得x>1,
    ∴g(x)在(-∞,1)上单调递增,在(1,+∞)上单调递减.
    ∴当x∈时,g(x)max=g(1)=.
    由8+a≤,得a≤-8,
    ∴实数a的取值范围为.

    (1)∀x1∈D1,∃x2∈D2,f(x1)>g(x2),等价于函数f(x)在D1上的最小值大于g(x)在D2上的最小值即f(x)min>g(x)min(这里假设f(x)min,g(x)min存在).其等价转化的基本思想是:函数y=f(x)的任意一个函数值大于函数y=g(x)的某一个函数值,但并不要求大于函数y=g(x)的所有函数值.
    (2)∀x1∈D1,∃x2∈D2,f(x1)<g(x2),等价于函数f(x)在D1上的最大值小于函数g(x)在D2上的最大值(这里假设f(x)max,g(x)max存在).其等价转化的基本思想是:函数y=f(x)的任意一个函数值小于函数y=g(x)的某一个函数值,但并不要求小于函数y=g(x)的所有函数值.  
    [过关训练]
    已知函数f(x)=,g(x)=-x3+(a+1)x2-3ax-1,其中a为常数.
    (1)当a=1时,求曲线g(x)在x=0处的切线方程;
    (2)若a<0,对于任意的x1∈[1,2],总存在x2∈[1,2],使得f(x1)=g(x2),求实数a的取值范围.
    解:(1)当a=1时,g(x)=-x3+3x2-3x-1,
    所以g′(x)=-3x2+6x-3,g′(0)=-3,又因为g(0)=-1,
    所以曲线g(x)在x=0处的切线方程为y+1=-3x,即3x+y+1=0.
    (2)f(x)===3-,
    当x∈[1,2]时,∈,
    所以-∈[-3,-2],
    所以3-∈[0,1],故f(x)在[1,2]上的值域为[0,1].
    由g(x)=-x3+(a+1)x2-3ax-1,可得
    g′(x)=-3x2+3(a+1)x-3a=-3(x-1)(x-a).
    因为a<0,所以当x∈[1,2]时,g′(x)<0,
    所以g(x)在[1,2]上单调递减,
    故当x∈[1,2]时,
    g(x)max=g(1)=-1+(a+1)-3a-1=-a-,
    g(x)min=g(2)=-8+6(a+1)-6a-1=-3,
    即g(x)在[1,2]上的值域为.
    因为对于任意的x1∈[1,2] ,总存在x2∈[1,2],
    使得f(x1)=g(x2),
    所以[0,1]⊆,
    所以-a-≥1,解得a≤-1,
    故a的取值范围为(-∞,-1].
    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2020版高考理科数学(人教版)一轮复习讲义:第三章第三节导数的综合应用第一课时 利用导数解不等式
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map