所属成套资源:2020高考人教通用版理科数学新增分一轮讲义
2020版高考数学(理)新增分大一轮人教通用版讲义:第四章 三角函数、解三角形高考专题突破二
展开
高考专题突破二 高考中的三角函数与解三角形问题
题型一 三角函数的图象和性质
例1 (2016·山东)设f(x)=2sin(π-x)sin x-(sin x-cos x)2.
(1)求f(x)的单调递增区间;
(2)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位长度,得到函数y=g(x)的图象,求g的值.
解 (1)由f(x)=2sin(π-x)sin x-(sin x-cos x)2
=2sin2x-(1-2sin xcos x)
=(1-cos 2x)+sin 2x-1
=sin 2x-cos 2x+-1
=2sin+-1.
由2kπ-≤2x-≤2kπ+(k∈Z),
得kπ-≤x≤kπ+(k∈Z).
所以f(x)的单调递增区间是(k∈Z).
(2)由(1)知f(x)=2sin+-1,
把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),
得到y=2sin+-1的图象,
再把得到的图象向左平移个单位长度,
得到y=2sin x+-1的图象,
即g(x)=2sin x+-1.
所以g=2sin +-1=.
思维升华 三角函数的图象与性质是高考考查的重点,通常先将三角函数化为y=Asin(ωx+φ)+k的形式,然后将t=ωx+φ视为一个整体,结合y=sin t的图象求解.
跟踪训练1 已知函数f(x)=5sin xcos x-5cos2x+(其中x∈R),求:
(1)函数f(x)的最小正周期;
(2)函数f(x)的单调区间;
(3)函数f(x)图象的对称轴和对称中心.
解 (1)因为f(x)=sin 2x-(1+cos 2x)+
=5=5sin,
所以函数的最小正周期T==π.
(2)由2kπ-≤2x-≤2kπ+(k∈Z),
得kπ-≤x≤kπ+(k∈Z),
所以函数f(x)的单调递增区间为(k∈Z).
由2kπ+≤2x-≤2kπ+(k∈Z),
得kπ+≤x≤kπ+(k∈Z),
所以函数f(x)的单调递减区间为(k∈Z).
(3)由2x-=kπ+(k∈Z),
得x=+(k∈Z),
所以函数f(x)的对称轴方程为x=+(k∈Z).
由2x-=kπ(k∈Z),
得x=+(k∈Z),
所以函数f(x)的对称中心为(k∈Z).
题型二 解三角形
例2 △ABC的内角A,B,C的对边分别为a,b,c,已知sin A+cos A=0,a=2,b=2.
(1)求角A和边长c;
(2)设D为BC边上一点,且AD⊥AC,求△ABD的面积.
解 (1)∵sin A+cos A=0,
∴tan A=-,
又0