所属成套资源:2020高考人教通用版理科数学新增分一轮讲义
2020版高考数学(理)新增分大一轮人教通用版讲义:第八章 立体几何与空间向量8.6
展开
§8.6 空间向量及其运算
最新考纲
考情考向分析
1.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.
2.掌握空间向量的线性运算及其坐标表示.
3.掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线和垂直.
本节是空间向量的基础内容,涉及空间直角坐标系、空间向量的有关概念、定理、公式及四种运算等内容.一般不单独命题,常以简单几何体为载体;以解答题的形式出现,考查平行、垂直关系的判断和证明及空间角的计算,解题要求有较强的运算能力.
1.空间向量的有关概念及定理
语言描述
共线向量
(平行向量)
如果空间一些向量的基线互相平行或重合,则这些向量叫做共线向量或平行向量
共线向
量定理
两个空间向量a,b(b≠0),a∥b的充要条件是存在唯一的实数x,使a=xb
共面向
量定理
如果两个向量a、b不共线,则向量c与向量a,b共面的充要条件是,存在唯一的一对实数x,y,使c=xa+yb
空间向量
分解定理
如果三个向量a,b,c不共面,那么对空间任一向量p,存在一个唯一的有序实数组x,y,z,使p=xa+yb+zc
2.两向量的夹角
已知两个非零向量a,b,在空间任取一点O,作=a,=b,则角∠AOB叫做向量a与b的夹角,记作〈a,b〉,通常规定0≤〈a,b〉≤π.
3.两条异面直线所成的角
把异面直线平移到一个平面内,这时两条直线的夹角(锐角或直角)叫做两条异面直线所成的角.
4.数量积及坐标运算
(1)两个向量的数量积:
①a·b=|a||b|cos〈a,b〉;
②a⊥b⇔a·b=0(a,b为非零向量);
③|a|2=a·a,|a|=.
(2)向量的坐标运算:
a=(a1,a2,a3),b=(b1,b2,b3)
向量和
a+b=(a1+b1,a2+b2,a3+b3)
向量差
a-b=(a1-b1,a2-b2,a3-b3)
数量积
a·b=a1b1+a2b2+a3b3
数乘向量
λa=(λa1,λa2,λa3)
共线
a∥b(b≠0)⇔a1=λb1,a2=λb2,a3=λb3
a∥b⇔==(b与三个坐标平面都不平行)
垂直
a⊥b⇔a1b1+a2b2+a3b3=0
夹角公式
cos〈a,b〉=
概念方法微思考
1.共线向量与共面向量相同吗?
提示 不相同.平行于同一平面的向量就为共面向量.
2.零向量能作为基向量吗?
提示 不能.由于零向量与任意一个非零向量共线,与任意两个非零向量共面,故零向量不能作为基向量.
3.空间向量的坐标运算与坐标原点的位置选取有关吗?
提示 无关.这是因为一个确定的几何体,其“线线”夹角、“点点”距离都是固定的,坐标系的位置不同,只会影响其计算的繁简,不会影响结果.
题组一 思考辨析
1.判断下列结论是否正确(请在括号中打“√”或“×”)
(1)空间中任意两个非零向量a,b共面.( √ )
(2)在向量的数量积运算中(a·b)·c=a·(b·c).( × )
(3)对于非零向量b,由a·b=b·c,则a=c.( × )
(4)两向量夹角的范围与两异面直线所成角的范围相同.( × )
(5)若A,B,C,D是空间任意四点,则有+++=0.( √ )
(6)若a·b