![2020版高考数学(理)新增分大一轮人教通用版讲义:第十一章 算法、统计与统计案例11.4第1页](http://img-preview.51jiaoxi.com/3/3/5748550/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2020版高考数学(理)新增分大一轮人教通用版讲义:第十一章 算法、统计与统计案例11.4第2页](http://img-preview.51jiaoxi.com/3/3/5748550/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2020版高考数学(理)新增分大一轮人教通用版讲义:第十一章 算法、统计与统计案例11.4第3页](http://img-preview.51jiaoxi.com/3/3/5748550/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:2020高考人教通用版理科数学新增分一轮讲义
2020版高考数学(理)新增分大一轮人教通用版讲义:第十一章 算法、统计与统计案例11.4
展开
§11.4 变量的相关性
最新考纲
考情考向分析
1.会作两个相关变量的数据的散点图,会利用散点图认识变量间的相关关系.
2.了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程.
3.了解独立性检验的基本思想、方法及其初步应用.
4.了解回归分析的基本思想、方法及简单应用.
回归分析,独立性检验是全国卷高考重点考查的内容,必考一个解答题,选择、填空题中也会出现.主要考查回归方程,相关系数,利用回归方程进行预测,独立性检验的应用等.
1.变量间的相关关系
2.散点图
以一个变量的取值为横坐标,另一个变量的相应取值为纵坐标,在直角坐标系中描点,这样的图形叫做散点图.
3.回归直线方程与回归分析
(1)直线方程 =a+bx,叫做Y对x的回归直线方程,b叫做回归系数.要确定回归直线方程,只要确定a与回归系数b.
(2)用最小二乘法求回归直线方程中的a,b有下列公式
=, =- ,其中的 , 表示是由观察值按最小二乘法求得的a,b的估计值.
(3)相关性检验
①计算相关系数r,r具有以下性质:|r|≤1,并且|r|越接近1,线性相关程度越强;|r|越接近0,线性相关程度越弱;
②|r|>r0.05,表明有95%的把握认为x与Y之间具有线性相关关系,回归直线方程有意义;否则寻找回归直线方程毫无意义.
4.独立性检验
(1)2×2列联表:
B
合计
A
n11
n12
n1+
n21
n22
n2+
合计
n+1
n+2
n
其中n1+=n11+n12,n2+=n21+n22,n+1=n11+n21,n+2=n12+n22,n=n11+n12+n21+n22.
(2)χ2统计量:
χ2=.
(3)两个临界值:3.841与6.635
当χ2>3.841时,有95%的把握说事件A与B有关;
当χ2>6.635时,有99%的把握说事件A与B有关;
当χ2≤3.841时,认为事件A与B是无关的.
概念方法微思考
1.变量的相关关系与变量的函数关系有什么区别?
提示 相同点:两者均是指两个变量的关系.
不同点:①函数关系是一种确定的关系,相关关系是一种非确定的关系.
②函数关系是一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系.
2.如何判断两个变量间的线性相关关系?
提示 散点图中点的分布从整体上看大致在一条直线附近,或者通过计算相关系数作出判断.
3.独立性检验的基本步骤是什么?
提示 列出2×2列联表,计算χ2值,根据临界值表得出结论.
4.回归直线方程是否都有实际意义?根据回归直线方程进行预报是否一定准确?
提示 (1)不一定都有实际意义.回归分析是对具有相关关系的两个变量进行统计分析的方法,只有在散点图大致呈线性时,求出的回归直线方程才有实际意义,否则,求出的回归直线方程毫无意义.
(2)根据回归方程进行预报,仅是一个预报值,而不是真实发生的值.
题组一 思考辨析
1.判断下列结论是否正确(请在括号中打“√”或“×”)
(1)相关关系与函数关系都是一种确定性的关系,也是一种因果关系.( × )
(2)“名师出高徒”可以解释为教师的教学水平与学生的水平成正相关关系.( √ )
(3)只有两个变量有相关关系,所得到的回归模型才有预测价值.( √ )
(4)某同学研究卖出的热饮杯数y与气温x(℃)之间的关系,得回归直线方程=-2.352x+147.767,则气温为2℃时,一定可卖出143杯热饮.( × )
(5)事件X,Y关系越密切,则由观测数据计算得到的χ2的值越大.( √ )
题组二 教材改编
2.为调查中学生近视情况,测得某校男生150名中有80名近视,在140名女生中有70名近视.在检验这些学生眼睛近视是否与性别有关时,用下列哪种方法最有说服力( )
A.回归分析 B.期望与方差
C.独立性检验 D.概率
答案 C
解析 “近视”与“性别”是两类变量,其是否有关,应用独立性检验判断.
3.下面是2×2列联表:
y1
y2
合计
x1
a
21
73
x2
22
25
47
合计
b
46
120
则表中a,b的值分别为( )
A.94,72 B.52,50
C.52,74 D.74,52
答案 C
解析 ∵a+21=73,∴a=52.
又a+22=b,∴b=74.
4.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验.根据收集到的数据(如下表),由最小二乘法求得回归方程=0.67x+54.9.
零件数x (个)
10
20
30
40
50
加工时间y (min)
62
75
81
89
现发现表中有一个数据看不清,请你推断出该数据的值为________.
答案 68
解析 由=30,得=0.67×30+54.9=75.
设表中的“模糊数字”为a,
则62+a+75+81+89=75×5,∴a=68.
题组三 易错自纠
5.某医疗机构通过抽样调查(样本容量n=1 000),利用2×2列联表和χ2统计量研究患肺病是否与吸烟有关.计算得χ2=4.453,经查阅临界值表知P(χ2>3.841)≈0.05,现给出四个结论,其中正确的是( )
A.在100个吸烟的人中约有95个人患肺病
B.若某人吸烟,那么他有95%的可能性患肺病
C.有95%的把握认为“患肺病与吸烟有关”
D.只有5%的把握认为“患肺病与吸烟有关”
答案 C
解析 由已知数据可得,有1-0.05=95%的把握认为“患肺病与吸烟有关”.
6.在一次考试中,5名学生的数学和物理成绩如下表:(已知学生的数学和物理成绩具有线性相关关系)
学生的编号i
1
2
3
4
5
数学成绩x
80
75
70
65
60
物理成绩y
70
66
68
64
62
现已知其回归直线方程为=0.36x+,则根据此线性回归方程估计数学得90分的同学的物理成绩为______.(四舍五入到整数)
答案 73
解析 ==70,
==66,
所以66=0.36×70+,=40.8,
即回归直线方程为=0.36x+40.8.
当x=90时,=0.36×90+40.8=73.2≈73.
题型一 相关关系的判断
例1 (1)观察下列各图形,
其中两个变量x,y具有相关关系的图是( )
A.①② B.①④ C.③④ D.②③
答案 C
解析 由散点图知③中的点都分布在一条直线附近.④中的点都分布在一条曲线附近,所以③④中的两个变量具有相关关系.
(2)(2018·沈阳质检)根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)的柱形图.以下结论不正确的是( )
A.逐年比较,2008年减少二氧化硫排放量的效果最显著
B.2007年我国治理二氧化硫排放显现成效
C.2006年以来我国二氧化硫年排放量呈减少趋势
D.2006年以来我国二氧化硫年排放量与年份正相关
答案 D
解析 从2006年,将每年的二氧化硫排放量与前一年作差比较,得到2008年二氧化硫排放量与2007年排放量的差最大,A选项正确;
2007年二氧化硫排放量较2006年降低了很多,B选项正确;
虽然2011年二氧化硫排放量较2010年多一些,但自2006年以来,整体呈递减趋势,C选项正确;
自2006年以来我国二氧化硫年排放量与年份负相关,D选项错误,故选D.
思维升华 判定两个变量正,负相关性的方法
(1)画散点图:点的分布从左下角到右上角,两个变量正相关;点的分布从左上角到右下角,两个变量负相关.
(2)相关系数:当r>0时,正相关;当r0时,正相关;当
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)