![2020版高考数学(文)新增分大一轮人教通用版讲义:第三章 导数及其应用高考专题突破一第1课时第1页](http://img-preview.51jiaoxi.com/3/3/5748575/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2020版高考数学(文)新增分大一轮人教通用版讲义:第三章 导数及其应用高考专题突破一第1课时第2页](http://img-preview.51jiaoxi.com/3/3/5748575/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2020版高考数学(文)新增分大一轮人教通用版讲义:第三章 导数及其应用高考专题突破一第1课时第3页](http://img-preview.51jiaoxi.com/3/3/5748575/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:2020高考人教A版文科数学一轮讲义
2020版高考数学(文)新增分大一轮人教通用版讲义:第三章 导数及其应用高考专题突破一第1课时
展开高考专题突破一 高考中的导数应用问题第1课时 导数与不等式题型一 证明不等式例1 设函数f(x)=ln x-x+1.(1)讨论f(x)的单调性;(2)证明:当x∈(1,+∞)时,1<<x.(1)解 由题设知,f(x)的定义域为(0,+∞),f′(x)=-1,令f′(x)=0,解得x=1.当0<x<1时,f′(x)>0,f(x)单调递增;当x>1时,f′(x)<0,f(x)单调递减.(2)证明 由(1)知,f(x)在x=1处取得极大值也为最大值,最大值为f(1)=0.所以当x≠1时,ln x<x-1.故当x∈(1,+∞)时,ln x<x-1,ln<-1,即1<<x.思维升华 (1)证明f(x)>g(x)的一般方法是证明h(x)=f(x)-g(x)>0(利用单调性),特殊情况是证明f(x)min>g(x)max(最值方法),但后一种方法不具备普遍性.(2)证明二元不等式的基本思想是化为一元不等式,一种方法为变换不等式使两个变元成为一个整体,另一种方法为转化后利用函数的单调性,如不等式f(x1)+g(x1)<f(x2)+g(x2)对x1<x2恒成立,即等价于函数h(x)=f(x)+g(x)为增函数.跟踪训练1 已知函数f(x)=xln x-ex+1.(1)求曲线y=f(x)在点(1,f(1))处的切线方程;(2)证明:f(x)<sin x在(0,+∞)上恒成立.(1)解 依题意得f′(x)=ln x+1-ex,又f(1)=1-e,f′(1)=1-e,故所求切线方程为y-1+e=(1-e)(x-1),即y=(1-e)x.(2)证明 依题意,要证f(x)<sin x,即证xln x-ex+1<sin x,即证xln x<ex+sin x-1.当0<x≤1时,ex+sin x-1>0,xln x≤0,故xln x<ex+sin x-1,即f(x)<sin x.当x>1时,令g(x)=ex+sin x-1-xln x,故g′(x)=ex+cos x-ln x-1.令h(x)=g′(x)=ex+cos x-ln x-1,则h′(x)=ex--sin x,当x>1时,ex->e-1>1,所以h′(x)=ex--sin x>0,故h(x)在(1,+∞)上单调递增.故h(x)>h(1)=e+cos 1-1>0,即g′(x)>0,所以g(x)在(1,+∞)上单调递增,所以g(x)>g(1)=e+sin 1-1>0,即xln x<ex+sin x-1,即f(x)<sin x.综上所述,f(x)<sin x在(0,+∞)上恒成立.题型二 不等式恒成立或有解问题例2 (2018·大连模拟)已知函数f(x)=.(1)若函数f(x)在区间上存在极值,求正实数a的取值范围;(2)如果当x≥1时,不等式f(x)≥恒成立,求实数k的取值范围.解 (1)函数的定义域为(0,+∞),f′(x)==-,令f′(x)=0,得x=1.当x∈(0,1)时,f′(x)>0,f(x)单调递增;当x∈(1,+∞)时,f′(x)<0,f(x)单调递减.所以x=1为函数f(x)的极大值点,且是唯一极值点,所以0<a<1<a+,故<a<1,即实数a的取值范围为.(2)当x≥1时,k≤恒成立,令g(x)=(x≥1),则g′(x)==.再令h(x)=x-ln x(x≥1),则h′(x)=1-≥0,所以h(x)≥h(1)=1,所以g′(x)>0,所以g(x)为单调增函数,所以g(x)≥g(1)=2,故k≤2,即实数k的取值范围是(-∞,2].引申探究本例(2)中若改为:∃x∈[1,e],使不等式f(x)≥成立,求实数k的取值范围.解 当x∈[1,e]时,k≤有解,令g(x)=(x∈[1,e]),由例(2)解题知,g(x)为单调增函数,所以g(x)max=g(e)=2+,所以k≤2+,即实数k的取值范围是.思维升华 利用导数解决不等式的恒成立问题的策略(1)首先要构造函数,利用导数求出最值,求出参数的取值范围.(2)也可分离变量,构造函数,直接把问题转化为函数的最值问题.跟踪训练2 已知函数f(x)=ax+ln x,x∈[1,e],若f(x)≤0恒成立,求实数a的取值范围.解 ∵f(x)≤0,即ax+ln x≤0对x∈[1,e]恒成立,∴a≤-,x∈[1,e].令g(x)=-,x∈[1,e],则g′(x)=,∵x∈[1,e],∴g′(x)≤0,∴g(x)在[1,e]上单调递减,∴g(x)min=g(e)=-,∴a≤-.∴实数a的取值范围是.1.已知函数f(x)=ln x+x,g(x)=x·ex-1,求证:f(x)≤g(x).证明 令F(x)=f(x)-g(x)=ln x+x-xex+1(x>0),则F′(x)=+1-ex-xex=-(x+1)ex=(x+1).令G(x)=-ex,可知G(x)在(0,+∞)上为减函数,且G=2->0,G(1)=1-e<0,∴存在x0∈,使得G(x0)=0,即-=0.当x∈(0,x0)时,G(x)>0,∴F′(x)>0,F(x)为增函数;当x∈(x0,+∞)时,G(x)<0,∴F′(x)<0,F(x)为减函数.∴F(x)≤F(x0)=ln x0+x0-x0+1,又∵-=0,∴=,即ln x0=-x0,∴F(x0)=0,即F(x)≤0,∴f(x)≤g(x).2.已知f(x)=ex-ax2,若f(x)≥x+(1-x)·ex在[0,+∞)恒成立,求实数a的取值范围.解 f(x)≥x+(1-x)ex,即ex-ax2≥x+ex-xex,即ex-ax-1≥0,x≥0.令h(x)=ex-ax-1(x≥0),则h′(x)=ex-a(x≥0),当a≤1时,由x≥0知h′(x)≥0,∴h(x)≥h(0)=0,原不等式恒成立.当a>1时,令h′(x)>0,得x>ln a;令h′(x)<0,得0≤x<ln a.∴h(x)在[0,ln a)上单调递减,又∵h(0)=0,∴h(x)≥0不恒成立,∴a>1不合题意.综上,a的取值范围为(-∞,1].3.已知函数f(x)=ax-ex(a∈R),g(x)=.(1)求函数f(x)的单调区间;(2)∃x∈(0,+∞),使不等式f(x)≤g(x)-ex成立,求a的取值范围.解 (1)因为f′(x)=a-ex,x∈R.当a≤0时,f′(x)<0,f(x)在R上单调递减;当a>0时,令f′(x)=0,得x=ln a.由f′(x)>0,得f(x)的单调递增区间为(-∞,ln a);由f′(x)<0,得f(x)的单调递减区间为(ln a,+∞).综上所述,当a≤0时,f(x)的单调递减区间为(-∞,+∞),无单调递增区间;当a>0时,f(x)的单调递增区间为(-∞,ln a),单调递减区间为(ln a,+∞).(2)因为∃x∈(0,+∞),使不等式f(x)≤g(x)-ex,则ax≤,即a≤.设h(x)=,则问题转化为a≤max,由h′(x)=,令h′(x)=0,得x=.当x在区间(0,+∞)内变化时,h′(x),h(x)随x变化的变化情况如下表:x(0,)(,+∞)h′(x)+0-h(x)极大值 由上表可知,当x=时,函数h(x)有极大值,即最大值为,所以a≤.故a的取值范围是.4.设函数f(x)=ax2-xln x-(2a-1)x+a-1(a∈R).若对任意的x∈[1,+∞),f(x)≥0恒成立,求实数a的取值范围.解 f′(x)=2ax-1-ln x-(2a-1)=2a(x-1)-ln x(x>0),易知当x∈(0,+∞)时,ln x≤x-1,则f′(x)≥2a(x-1)-(x-1)=(2a-1)(x-1).当2a-1≥0,即a≥时,由x∈[1,+∞)得f′(x)≥0恒成立,f(x)在[1,+∞)上单调递增,f(x)≥f(1)=0,符合题意.当a≤0时,由x∈[1,+∞)得f′(x)≤0恒成立,f(x)在[1,+∞)上单调递减,f(x)≤f(1)=0,显然不合题意,a≤0舍去.当0<a<时,由ln x≤x-1,得ln ≤-1,即ln x≥1-,则f′(x)≤2a(x-1)-=(2ax-1),∵0<a<,∴>1.当x∈时,f′(x)≤0恒成立,∴f(x)在上单调递减,∴当x∈时,f(x)≤f(1)=0,显然不合题意,0<a<舍去.综上可得,a∈.5.已知函数f(x)为偶函数,当x≥0时,f(x)=2ex,若存在实数m,对任意的x∈[1,k](k>1),都有f(x+m)≤2ex,求整数k的最小值.解 因为f(x)为偶函数,且当x≥0时,f(x)=2ex,所以f(x)=2e|x|,对于x∈[1,k],由f(x+m)≤2ex得2e|x+m|≤2ex,两边取以e为底的对数得|x+m|≤ln x+1,所以-x-ln x-1≤m≤-x+ln x+1在[1,k]上恒成立,设g(x)=-x+ln x+1(x∈[1,k]),则g′(x)=-1+=≤0,所以g(x)在[1,k]上单调递减,所以g(x)min=g(k)=-k+ln k+1,设h(x)=-x-ln x-1(x∈[1,k]),易知h(x)在[1,k]上单调递减,所以h(x)max=h(1)=-2,故-2≤m≤-k+ln k+1,若实数m存在,则必有-k+ln k≥-3,又k>1,且k为整数,所以k=2满足要求,故整数k的最小值为2.
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)