所属成套资源:2020版物理新增分大一轮新高考讲义(京津鲁琼)
2020版物理新增分大一轮新高考(京津鲁琼)讲义:第五章机械能第3讲
展开
第3讲 机械能守恒定律及应用
一、重力做功与重力势能的关系
1.重力做功的特点
(1)重力做功与路径无关,只与始末位置的高度差有关.
(2)重力做功不引起物体机械能的变化.
2.重力势能
(1)表达式:Ep=mgh.
(2)重力势能的特点
重力势能是物体和地球所共有的,重力势能的大小与参考平面的选取有关,但重力势能的变化与参考平面的选取无关.
3.重力做功与重力势能变化的关系
(1)定性关系:重力对物体做正功,重力势能减小;重力对物体做负功,重力势能增大;
(2)定量关系:重力对物体做的功等于物体重力势能的减小量.即WG=-(Ep2-Ep1)=-ΔEp.
自测1 关于重力势能,下列说法中正确的是( )
A.物体的位置一旦确定,它的重力势能的大小也随之确定
B.物体与零势能面的距离越大,它的重力势能也越大
C.一个物体的重力势能从-5 J变化到-3 J,重力势能减少了
D.重力势能的减少量等于重力对物体做的功
答案 D
二、弹性势能
1.定义:发生弹性形变的物体之间,由于有弹力的相互作用而具有的势能.
2.弹力做功与弹性势能变化的关系:
弹力做正功,弹性势能减小;弹力做负功,弹性势能增加.即W=-ΔEp.
自测2 (多选)关于弹性势能,下列说法中正确的是( )
A.任何发生弹性形变的物体,都具有弹性势能
B.任何具有弹性势能的物体,一定发生了弹性形变
C.物体只要发生形变,就一定具有弹性势能
D.弹簧的弹性势能只跟弹簧被拉伸或压缩的长度有关
答案 AB
三、机械能守恒定律
1.内容:在只有重力或弹力做功的物体系统内,动能与势能可以互相转化,而总的机械能保持不变.
2.表达式:mgh1+mv=mgh2+mv.
3.机械能守恒的条件
(1)系统只受重力或弹簧弹力的作用,不受其他外力.
(2)系统除受重力或弹簧弹力作用外,还受其他内力和外力,但这些力对系统不做功.
(3)系统内除重力或弹簧弹力做功外,还有其他内力和外力做功,但这些力做功的代数和为零.
(4)系统跟外界没有发生机械能的传递,系统内、外也没有机械能与其他形式的能发生转化.
自测3 (2018·山东省泰安市上学期期中)下列几种运动中,机械能一定守恒的是( )
A.做匀速直线运动的物体
B.做匀变速直线运动的物体
C.做平抛运动的物体
D.做匀速圆周运动的物体
答案 C
解析 做匀速直线运动的物体,动能不变,重力势能可能变化,机械能不一定守恒,故A错误;若是在水平面上的匀加速直线运动,动能增大,重力势能不变,则机械能不守恒,故B错误;做平抛运动的物体,只有重力做功,机械能必定守恒,故C正确;若物体在竖直平面内做匀速圆周运动,动能不变,重力势能在变化,机械能不守恒,故D错误.
自测4 (多选)如图1所示,在地面上以速度v0抛出质量为m的物体,抛出后物体落到比地面低h的海平面上.若以地面为零势能面,而且不计空气阻力,则下列说法中正确的是( )
图1
A.重力对物体做的功为mgh
B.物体在海平面上的重力势能为mgh
C.物体在海平面上的动能为mv-mgh
D.物体在海平面上的机械能为mv
答案 AD
命题点一 机械能守恒的判断
1.只有重力做功时,只发生动能和重力势能的相互转化.如自由落体运动、抛体运动等.
2.只有系统内弹力做功,只发生动能和弹性势能的相互转化.如在光滑水平面上运动的物体碰到一个弹簧,和弹簧相互作用的过程中,对物体和弹簧组成的系统来说,机械能守恒.
3.只有重力和系统内弹力做功,只发生动能、弹性势能、重力势能的相互转化.如自由下落的物体落到竖直的弹簧上,和弹簧相互作用的过程中,对物体和弹簧组成的系统来说,机械能守恒.
4.除受重力(或系统内弹力)外,还受其他力,但其他力不做功,或其他力做功的代数和为零.如物体在沿斜面向下的拉力F的作用下沿斜面向下运动,其拉力的大小与摩擦力的大小相等,在此运动过程中,其机械能守恒.
例1 如图2所示,将一个内外侧均光滑的半圆形槽置于光滑的水平面上,槽的左侧有一竖直墙壁.现让一小球自左端槽口A点的正上方由静止开始下落,小球从A点与半圆形槽相切进入槽内,则下列说法正确的是( )
图2
A.小球在半圆形槽内运动的全过程中,只有重力对它做功
B.小球从A点向半圆形槽的最低点运动的过程中,小球处于失重状态
C.小球从A点经最低点向右侧最高点运动的过程中,小球与槽组成的系统机械能守恒
D.小球从下落到从右侧离开槽的过程中机械能守恒
答案 C
解析 小球从A点向半圆形槽的最低点运动的过程中,半圆形槽有向左运动的趋势,但实际上没有动,整个系统中只有重力做功,所以小球与槽组成的系统机械能守恒;小球过了半圆形槽的最低点以后,半圆形槽向右运动,系统没有其他形式的能量产生,满足机械能守恒的条件,所以系统的机械能守恒;小球从A点至到达槽最低点过程中,小球先失重,后超重;小球由最低点向右侧最高点运动的过程中,半圆形槽也向右移动,半圆形槽对小球做负功,小球的机械能不守恒,故选项C正确.
变式1 如图3所示,用一轻绳系一小球悬于O点.现将小球拉至水平位置,然后释放,不计阻力,小球下落到最低点的过程中,下列表述正确的是( )
图3
A.小球的机械能守恒
B.小球所受的合力不变
C.小球的动能不断减小
D.小球的重力势能增加
答案 A
解析 小球在下落的过程中,受到重力和绳的拉力的作用,绳的拉力与小球的运动方向垂直,对小球不做功,只有重力做功,故在整个过程中小球的机械能守恒,选项A正确;由于小球的速度变大,动能增加,所需的向心力变大,故小球所受的合力变大,选项B、C错误;小球的高度下降,重力势能减小,选项D错误.
命题点二 单物体的机械能守恒问题
1.表达式
2.一般步骤
3.选用技巧
在处理单个物体机械能守恒问题时通常应用守恒观点和转化观点,转化观点不用选取零势能面.
例2 (2016·全国卷Ⅲ·24)如图4所示,在竖直平面内有由圆弧AB和圆弧BC组成的光滑固定轨道,两者在最低点B平滑连接.AB弧的半径为R,BC弧的半径为.一小球在A点正上方与A相距处由静止开始自由下落,经A点沿圆弧轨道运动.
图4
(1)求小球在B、A两点的动能之比;
(2)通过计算判断小球能否沿轨道运动到C点.
答案 (1)5∶1 (2)能,理由见解析
解析 (1)设小球的质量为m,小球在A点的动能为EkA,由机械能守恒得EkA=mg·①
设小球在B点的动能为EkB,同理有
EkB=mg·②
由①②式得=5③
(2)若小球能沿轨道运动到C点,小球在C点所受轨道的正压力FN应满足FN≥0④
设小球在C点的速度大小为vC,由牛顿第二定律和向心加速度公式有FN+mg=m⑤
由④⑤式得mg≤m⑥
vC≥ ⑦
对全程由机械能守恒定律得mg·=mvC′2⑧
由⑦⑧式可知,vC=vC′,即小球恰好可以沿轨道运动到C点.
变式2 (2019·湖南省株洲市上学期质检一)如图5所示,半径为R的光滑圆周轨道AB固定在竖直平面内,O为圆心,OA与水平方向的夹角为30°,OB在竖直方向.一个可视为质点的小球从O点正上方某处以某一水平初速度向右抛出,小球恰好能无碰撞地从A点进入圆轨道内侧,此后沿圆轨道运动到达B点.已知重力加速度为g,求:(不计空气阻力)
图5
(1)小球初速度的大小;
(2)小球运动到B点时对圆轨道压力的大小.
答案 (1) (2)6mg
解析 (1)设小球的初速度为v0,飞行时间为t,则在水平方向有Rcos 30°=v0t
在竖直方向有h1=gt2,vy=gt
小球运动到A点时与轨道无碰撞,故tan 30°=
联立解得v0=,h1=R.
(2)抛出点距轨道最低点的高度h=R+Rsin 30°+h1
设小球运动到最低点B时速度为v,圆轨道对小球的弹力为FN,
根据机械能守恒有mgh+mv=mv2
根据牛顿第二定律有FN-mg=m
联立解得FN=6mg
由牛顿第三定律得在B点时小球对圆轨道的压力大小为FN′=FN=6mg.
命题点三 连接体的机械能守恒问题
1.对多个物体组成的系统要注意判断物体运动过程中,系统的机械能是否守恒.
2.注意寻找用绳或杆相连接的物体间的速度关系和位移关系.
3.列机械能守恒方程时,一般选用ΔEk=-ΔEp或ΔEA=-ΔEB的形式.
例3 (2019·湖北省孝感市综合高级中学期中)如图6所示,左侧竖直墙面上固定半径为R=0.3 m的光滑半圆环,右侧竖直墙面上与圆环的圆心O等高处固定一光滑直杆.质量为ma=100 g的小球a套在半圆环上,质量为mb=36 g的滑块b套在直杆上,二者之间用长为l= 0.4 m的轻杆通过两铰链连接.现将a从圆环的最高处由静止释放,使a沿圆环自由下滑,不计一切摩擦,a、b均视为质点,重力加速度g=10 m/s2.求:
图6
(1)小球a滑到与圆心O等高的P点时的向心力大小;
(2)小球a从P点下滑至杆与圆环相切的Q点的过程中,杆对滑块b做的功.
答案 (1)2 N (2)0.194 4 J
解析 (1)当a滑到与圆心O等高的P点时,a的速度v沿圆环切线竖直向下,b的速度为零,
由机械能守恒可得:magR=mav2
解得v=
在P点对小球a,由牛顿第二定律可得:
Fn==2mag=2 N
(2)杆与圆环相切时,如图所示,此时a的速度沿杆方向,设此时b的速度为vb,
则知va=vbcos θ
由几何关系可得:
cos θ==0.8
球a下降的高度h=Rcos θ
a、b及杆组成的系统机械能守恒:
magh=mav+mbv-mav2
对滑块b,由动能定理得:W=mbv=0.194 4 J
变式3 (多选)(2018·贵州省贵阳市5月适应性二)如图7所示,不可伸长的轻绳通过定滑轮将物块甲、乙(均可视为质点)连接,物块甲套在固定的竖直光滑杆上,用外力使两物块静止,轻绳与竖直方向夹角θ=37°,然后撤去外力,甲、乙两物块从静止开始运动,物块甲恰能上升到最高点P,P点与滑轮上缘O在同一水平线上,甲、乙两物块质量分别为m、M,sin 37°=0.6,cos 37°=0.8,重力加速度为g,不计空气阻力,不计滑轮的大小和摩擦.设物块甲上升到最高点P时加速度为a,则下列说法正确的是( )
图7
A.M=2m B.M=3m
C.a=g D.a=0
答案 AC
解析 设QP间的距离为h,
OQ间的绳长L==,
则乙下降的高度为h′=L-htan 37°=,则根据机械能守恒定律可知mgh=Mgh′,解得M=2m,故A正确,B错误.甲上升到最高点P时,由于不受摩擦力,所以在竖直方向上只受重力,水平方向上弹力与绳子的拉力平衡,因此甲的加速度为g,故C正确,D错误.
命题点四 含弹簧类机械能守恒问题
1.由于弹簧的形变会具有弹性势能,系统的总动能将发生变化,若系统所受的外力(除重力外)和除弹簧弹力以外的内力不做功,系统机械能守恒.
2.在相互作用过程特征方面,弹簧两端物体把弹簧拉伸至最长(或压缩至最短)时,两端的物体具有相同的速度,弹性势能最大.
3.如果系统每个物体除弹簧弹力外所受合力为零,当弹簧为自然长度时,系统内弹簧某一端的物体具有最大速度(如绷紧的弹簧由静止释放).
例4 (2016·全国卷Ⅱ·25)轻质弹簧原长为2l,将弹簧竖直放置在地面上,在其顶端将一质量为5m的物体由静止释放,当弹簧被压缩到最短时,弹簧长度为l.现将该弹簧水平放置,一端固定在A点,另一端与物块P接触但不连接.AB是长度为5l的水平轨道,B端与半径为l的光滑半圆轨道BCD相切,半圆的直径BD竖直,如图8所示.物块P与AB间的动摩擦因数μ=0.5.用外力推动物块P,将弹簧压缩至长度l,然后放开,P开始沿轨道运动,重力加速度大小为g.
图8
(1)若P的质量为m,求P到达B点时速度的大小,以及它离开圆轨道后落回到AB上的位置与B点之间的距离;
(2)若P能滑上圆轨道,且仍能沿圆轨道滑下,求P的质量的取值范围.
答案 (1) 2l (2)m≤MμMg·4l⑩
要使P仍能沿圆轨道滑回,P在圆轨道的上升高度不能超过半圆轨道的中点C.由机械能守恒定律有
MvB′2≤Mgl⑪
Ep=MvB′2+μMg·4l⑫
联立①⑩⑪⑫式得m≤M