所属成套资源:2020高考物理人教通用版一轮讲义
2020版物理新增分大一轮人教通用版讲义:第三章牛顿运动定律第2讲
展开
第2讲 应用牛顿第二定律处理“四类”问题
一、瞬时问题
1.牛顿第二定律的表达式为:F合=ma,加速度由物体所受合外力决定,加速度的方向与物体所受合外力的方向一致.当物体所受合外力发生突变时,加速度也随着发生突变,而物体运动的速度不能发生突变.
2.轻绳、轻杆和轻弹簧(橡皮条)的区别:
(1)轻绳和轻杆:剪断轻绳或轻杆断开后,原有的弹力将突变为0.
(2)轻弹簧和橡皮条:当轻弹簧和橡皮条两端与其他物体连接时,轻弹簧或橡皮条的弹力不能发生突变.
自测1 如图1,A、B、C三个小球质量均为m,A、B之间用一根没有弹性的轻质细绳连在一起,B、C之间用轻弹簧拴接,整个系统用细线悬挂在天花板上并且处于静止状态.现将A上面的细线剪断,使A的上端失去拉力,则在剪断细线的瞬间,A、B、C三个小球的加速度分别是( )
图1
A.1.5g,1.5g,0
B.g,2g,0
C.g,g,g
D.g,g,0
答案 A
解析 剪断细线前,由平衡条件可知,A上端的细线的拉力为3mg,A、B之间细绳的拉力为2mg,轻弹簧的拉力为mg.在剪断细线的瞬间,轻弹簧中拉力不变,小球C所受合外力为零,所以C的加速度为零;A、B小球被细绳拴在一起,整体受到二者重力和轻弹簧向下的拉力,由牛顿第二定律得3mg=2ma,解得a=1.5g,选项A正确.
二、超重和失重
1.超重
(1)定义:物体对支持物的压力(或对悬挂物的拉力)大于物体所受重力的现象.
(2)产生条件:物体具有向上的加速度.
2.失重
(1)定义:物体对支持物的压力(或对悬挂物的拉力)小于物体所受重力的现象.
(2)产生条件:物体具有向下的加速度.
3.完全失重
(1)定义:物体对支持物的压力(或对竖直悬挂物的拉力)等于0的现象称为完全失重现象.
(2)产生条件:物体的加速度a=g,方向竖直向下.
4.实重和视重
(1)实重:物体实际所受的重力,它与物体的运动状态无关.
(2)视重:当物体在竖直方向上有加速度时,物体对弹簧测力计的拉力或对台秤的压力将不等于物体的重力.此时弹簧测力计的示数或台秤的示数即为视重.
自测2 关于超重和失重的下列说法中,正确的是( )
A.超重就是物体所受的重力增大了,失重就是物体所受的重力减小了
B.物体做自由落体运动时处于完全失重状态,所以做自由落体运动的物体不受重力作用
C.物体具有向上的速度时处于超重状态,物体具有向下的速度时处于失重状态
D.物体处于超重或失重状态时,物体的重力始终存在且不发生变化
答案 D
三、动力学图象
1.类型
(1)已知图象分析运动和受力情况;
(2)已知运动和受力情况分析图象的形状.
2.用到的相关知识
通常要先对物体受力分析求合力,再根据牛顿第二定律求加速度,然后结合运动学公式分析.
自测3 (2016·海南单科·5)沿固定斜面下滑的物体受到与斜面平行向上的拉力F的作用,其下滑的速度—时间图线如图2所示.已知物体与斜面之间的动摩擦因数为常数,在0~5 s,5~10 s,10~15 s内F的大小分别为F1、F2和F3,则( )
图2
A.F1F3
C.F1>F3 D.F1=F3
答案 A
命题点一 超重与失重现象
1.对超重和失重的理解
(1)不论超重、失重或完全失重,物体的重力都不变,只是“视重”改变.
(2)在完全失重的状态下,一切由重力产生的物理现象都会完全消失.
(3)尽管物体的加速度不是竖直方向,但只要其加速度在竖直方向上有分量,物体就会处于超重或失重状态.
(4)尽管整体没有竖直方向的加速度,但只要物体的一部分具有竖直方向的分加速度,整体也会出现超重或失重现象.
2.判断超重和失重的方法
从受力的角度判断
当物体所受向上的拉力(或支持力)大于重力时,物体处于超重状态;小于重力时,物体处于失重状态;等于零时,物体处于完全失重状态
从加速度的角度判断
当物体具有向上的加速度时,物体处于超重状态;具有向下的加速度时,物体处于失重状态;向下的加速度等于重力加速度时,物体处于完全失重状态
从速度变化的角度判断
①物体向上加速或向下减速时,超重
②物体向下加速或向上减速时,失重
例1 (2018·四川省乐山市第二次调研)图3甲是某人站在力传感器上做下蹲、起跳动作的示意图,中间的O表示人的重心.图乙是根据传感器采集到的数据画出的F-t图线,两图中a~g各点均对应,其中有几个点在图甲中没有画出.取重力加速度g=10 m/s2,根据图象分析可知( )
图3
A.人的重力为1 500 N
B.c点位置人处于失重状态
C.e点位置人处于超重状态
D.d点的加速度小于f点的加速度
答案 C
解析 开始时人处于平衡状态,人对传感器的压力是500 N,根据平衡条件与牛顿第三定律可知,人的重力也是500 N,故A错误;c点时人对传感器的压力大于其重力,处于超重状态,故B错误;e点时人对传感器的压力大于其重力,处于超重状态,故C正确;人在d点时:a1== m/s2=20 m/s2,人在f点时:a2== m/s2=10 m/s2,可知d点的加速度大于f点的加速度,故D错误.
变式1 广州塔,昵称小蛮腰,总高度达600米,游客乘坐观光电梯大约一分钟就可以到达观光平台.若电梯简化成只受重力与绳索拉力,已知电梯在t=0时由静止开始上升,a-t图象如图4所示.则下列相关说法正确的是( )
图4
A.t=4.5 s时,电梯处于失重状态
B.5~55 s时间内,绳索拉力最小
C.t=59.5 s时,电梯处于超重状态
D.t=60 s时,电梯速度恰好为零
答案 D
解析 利用a-t图象可判断:t=4.5 s时,电梯有向上的加速度,电梯处于超重状态,A错误;0~5 s时间内,电梯处于超重状态,拉力大于重力,5~55 s时间内,电梯处于匀速上升过程,拉力等于重力,55~60 s时间内,电梯处于失重状态,拉力小于重力,综上所述,B、C错误;因a-t图线与t轴所围的“面积”代表速度改变量,而图中横轴上方的“面积”与横轴下方的“面积”相等,则电梯的速度在t=60 s时为零,D正确.
变式2 (2018·广东省深圳市三校模拟)如图5,将金属块用压缩的轻弹簧卡在一个箱子中,上顶板和下底板装有压力传感器.当箱子随电梯以a=4.0 m/s2的加速度竖直向上做匀减速运动时,上顶板的传感器显示的压力为4.0 N,下底板的传感器显示的压力为10.0 N.取g=10 m/s2,若下底板示数不变,上顶板示数是下底板示数的一半,则电梯的运动状态可能是( )
图5
A.匀加速上升,a=5 m/s2
B.匀加速下降,a=5 m/s2
C.匀速上升
D.静止状态
答案 B
解析 当箱子随电梯以a=4.0 m/s2的加速度竖直向上做匀减速运动时,对金属块受力分析,由牛顿第二定律知:
FN上+mg-FN下=ma,m== kg=1 kg,G=mg=10 N
若上顶板传感器的示数是下底板传感器的示数的一半,由于弹簧压缩量不变,下底板传感器示数不变,仍为10 N,则上顶板传感器的示数是5 N.
对金属块,由牛顿第二定律知 FN上′+mg-FN下′=ma′
解得 a′=5 m/s2,方向向下,故电梯以a=5 m/s2的加速度匀加速下降,或以a=5 m/s2的加速度匀减速上升.故A、C、D错误,B正确.
命题点二 瞬时问题的两类模型
1.两种模型
加速度与合外力具有瞬时对应关系,二者总是同时产生、同时变化、同时消失,具体可简化为以下两种模型:
2.解题思路
⇒⇒
3.两个易混问题
(1)如图6甲、乙中小球m1、m2原来均静止,现如果均从图中A处剪断,则图甲中的轻质弹簧和图乙中的下段绳子的拉力将如何变化呢?
图6
(2)由(1)的分析可以得出什么结论?
答案 (1)弹簧的弹力来不及变化,下段绳的拉力变为0.
(2)绳的弹力可以突变而弹簧的弹力不能突变.
例2 (2019·河北省衡水中学第一次调研)如图7所示,一根弹簧一端固定在左侧竖直墙上,另一端连着A小球,同时水平细线一端连着A球,另一端固定在右侧竖直墙上,弹簧与竖直方向的夹角是60°,A、B两小球分别连在另一根竖直弹簧两端.开始时A、B两球都静止不动,A、B两小球的质量相等,重力加速度为g,若不计弹簧质量,在水平细线被剪断瞬间,A、B两球的加速度分别为( )
图7
A.aA=aB=g B.aA=2g,aB=0
C.aA=g,aB=0 D.aA=2g,aB=0
答案 D
解析 水平细线被剪断前对A、B进行受力分析如图所示,
静止时,FT=Fsin 60°,Fcos 60°=mAg+F1,F1=mBg,又mA=mB
解得FT=2mAg
水平细线被剪断瞬间,FT消失,其他各力不变,A所受合力与FT等大反向,所以aA==2g,aB=0.
例3 (多选)如图8所示,倾角为θ的斜面静置于地面上,斜面上表面光滑,A、B、C三球的质量分别为m、2m、3m,轻质弹簧一端固定在斜面顶端、另一端与A球相连,A、B间固定一个轻杆,B、C间由一轻质细线连接.弹簧、轻杆与细线均平行于斜面,初始系统处于静止状态,现突然剪断细线.下列判断正确的是( )
图8
A.细线被剪断的瞬间,A、B、C三个小球的加速度均为零
B.细线被剪断的瞬间,A、B之间杆的弹力大小为零
C.细线被剪断的瞬间,A、B球的加速度沿斜面向上,大小为gsin θ
D.细线被剪断的瞬间,A、B之间杆的弹力大小为4mgsin θ
答案 CD
解析 剪断细线前,以A、B、C组成的系统为研究对象,系统静止,处于平衡状态,所受合力为零,则弹簧的弹力为F=(3m+2m+m)gsin θ=6mgsin θ.以C为研究对象知,细线的拉力为3mgsin θ.剪断细线的瞬间,由于弹簧弹力不能突变,弹簧弹力不变,以A、B组成的系统为研究对象,由牛顿第二定律得F-(m+2m)gsin θ=(m+2m)aAB,解得A、B两个小球的加速度为aAB=gsin θ,方向沿斜面向上,以B为研究对象,由牛顿第二定律得:FAB-2mgsin θ=2maAB,解得杆的拉力为FAB=4mgsin θ,以C为研究对象,由牛顿第二定律得aC=gsin θ,方向沿斜面向下,故C、D正确,A、B错误.
变式3 (2018·山西省吕梁市第一次模拟)如图9所示,A球质量为B球质量的3倍,光滑固定斜面的倾角为θ,图甲中,A、B两球用轻弹簧相连,图乙中A、B两球用轻质杆相连,系统静止时,挡板C与斜面垂直,弹簧、轻杆均与斜面平行,则在突然撤去挡板的瞬间有( )
图9
A.图甲中A球的加速度为gsin θ
B.图甲中B球的加速度为2gsin θ
C.图乙中A、B两球的加速度均为gsin θ
D.图乙中轻杆的作用力一定不为零
答案 C
解析 设B球质量为m,A球的质量为3m.撤去挡板前,挡板对B球的弹力大小为4mgsin θ,因弹簧弹力不能突变,而杆的弹力会突变,所以撤去挡板瞬间,题图甲中A球所受的合力为零,加速度为零,B球所受合力为4mgsin θ,加速度为4gsin θ;题图乙中,撤去挡板的瞬间,A、B两球整体的合力为4mgsin θ,A、B两球的加速度均为gsin θ,则每个球的合力等于重力沿斜面向下的分力,轻杆的作用力为零,C正确.
命题点三 动力学图象问题
1.常见的动力学图象
v-t图象、a-t图象、F-t图象、F-a图象等.
2.图象问题的类型
(1)已知物体受的力随时间变化的图线,要求分析物体的运动情况.
(2)已知物体的速度、加速度随时间变化的图线,要求分析物体的受力情况.
(3)由已知条件确定某物理量的变化图象.
3.解题策略
(1)分清图象的类别:即分清横、纵坐标所代表的物理量,明确其物理意义,掌握物理图象所反映的物理过程,会分析临界点.
(2)注意图线中的一些特殊点所表示的物理意义:图线与横、纵坐标的交点,图线的转折点,两图线的交点等.
(3)明确能从图象中获得哪些信息:把图象与具体的题意、情景结合起来,应用物理规律列出与图象对应的函数方程式,进而明确“图象与公式”“图象与物体”间的关系,以便对有关物理问题作出准确判断.
例4 (2018·广东省湛江市第二次模拟)如图10甲所示,在光滑水平面上,静止放置一质量为M的足够长木板,质量为m的小滑块(可视为质点)放在长木板上.长木板受到水平拉力F与加速度的关系如图乙所示,重力加速度大小g取10 m/s2,下列说法正确的是( )
图10
A.长木板的质量M=2 kg
B.小滑块与长木板之间的动摩擦因数为0.4
C.当F=14 N时,长木板的加速度大小为3 m/s2
D.当F增大时,小滑块的加速度一定增大
答案 B
解析 当F等于12 N时,加速度为:a0=4 m/s2,对整体分析,由牛顿第二定律有F=(M+m)a0,代入数据解得:M+m=3 kg;当F大于12 N时,m和M发生相对滑动,根据牛顿第二定律得:F-μmg=Ma,则F=Ma+μmg,则知F-a图线的斜率k=M==1,则M=1 kg,故m=2 kg,故A错误;由A项分析可知:F大于12 N时,F=a+20μ,若F=8 N,a=0,即得μ=0.4,故B正确;由A项分析可知:F大于12 N时F=a+8,当F=14 N时,长木板的加速度为:a=6 m/s2,故C错误;当F大于12 N后,二者发生相对滑动,小滑块的加速度为a=μg,与F无关,F增大时小滑块的加速度不变,故D错误.
变式4 (多选)(2019·福建省三明市质检)水平地面上质量为1 kg的物块受到水平拉力F1、F2的作用,F1、F2随时间的变化如图11所示,已知物块在前2 s内以4 m/s的速度做匀速直线运动,取g=10 m/s2,则(最大静摩擦力等于滑动摩擦力)( )
图11
A.物块与地面的动摩擦因数为0.2
B.3 s末物块受到的摩擦力大小为3 N
C.4 s末物块受到的摩擦力大小为1 N
D.5 s末物块的加速度大小为3 m/s2
答案 BC
解析 在0~2 s内物块做匀速直线运动,则摩擦力Ff=3 N,则μ===0.3,选项A错误;2 s后物块做匀减速直线运动,加速度a== m/s2=-2 m/s2,则经过t==2 s,即4 s末速度减为零,则3 s末物块受到的摩擦力大小为3 N,4 s末物块受到的摩擦力为静摩擦力,大小为6 N-5 N=1 N,选项B、C正确;物块停止后,因两个力的差值小于最大静摩擦力,则物块不再运动,则5 s末物块的加速度为零,选项D错误.
变式5 (2018·安徽省池州市上学期期末)如图12所示为质量m=75 kg的滑雪运动员在倾角θ=37°的直滑道上由静止开始向下滑行的v-t图象,图中的OA直线是t=0时刻速度图线的切线,速度图线末段BC平行于时间轴,运动员与滑道间的动摩擦因数为μ,所受空气阻力与速度成正比,比例系数为k.设最大静摩擦力等于滑动摩擦力,取重力加速度g=10 m/s2,sin 37°=0.6,cos 37°=0.8,则( )
图12
A.滑雪运动员开始时做加速度增大的加速直线运动,最后做匀速运动
B.t=0时刻运动员的加速度大小为2 m/s2
C.动摩擦因数μ为0.25
D.比例系数k为15 kg/s
答案 C
解析 由v-t图象可知,滑雪运动员开始时做加速度减小的加速直线运动,最后做匀速运动,故A错误;在t=0时刻,图线切线的斜率即为该时刻的加速度,故有a0= m/s2=4 m/s2,故B错误;在t=0时刻开始加速时,v0=0,由牛顿第二定律可得mgsin θ-kv0-μmgcos θ=ma0,最后匀速时有:vm=10 m/s,a=0,由平衡条件可得mgsin θ-kvm-μmgcos θ=0,联立解得: μ=0.25,k=30 kg/s,故C正确,D错误.
命题点四 动力学中的连接体问题
1.连接体的类型
(1)弹簧连接体
(2)物物叠放连接体
(3)轻绳连接体
(4)轻杆连接体
2.连接体的运动特点
轻绳——轻绳在伸直状态下,两端的连接体沿绳方向的速度总是相等.
轻杆——轻杆平动时,连接体具有相同的平动速度;轻杆转动时,连接体具有相同的角速度,而线速度与转动半径成正比.
轻弹簧——在弹簧发生形变的过程中,两端连接体的速度不一定相等;在弹簧形变最大时,两端连接体的速率相等.
3.处理连接体问题的方法
整体法的选取原则
若连接体内各物体具有相同的加速度,且不需要求物体之间的作用力,可以把它们看成一个整体,分析整体受到的外力,应用牛顿第二定律求出加速度或其他未知量
隔离法的选取原则
若连接体内各物体的加速度不相同,或者要求出系统内两物体之间的作用力时,就需要把物体从系统中隔离出来,应用牛顿第二定律列方程求解
整体法、隔离法的交替运用
若连接体内各物体具有相同的加速度,且要求物体之间的作用力时,可以先用整体法求出加速度,然后再用隔离法选取合适的研究对象,应用牛顿第二定律求作用力.即“先整体求加速度,后隔离求内力”
例5 (多选)(2018·广东省湛江市第二次模拟)如图13所示,a、b、c为三个质量均为m的物块,物块a、b通过水平轻绳相连后放在水平面上,物块c放在b上.现用水平拉力作用于a,使三个物块一起水平向右匀速运动.各接触面间的动摩擦因数均为μ,重力加速度大小为g.下列说法正确的是( )
图13
A.该水平拉力大于轻绳的弹力
B.物块c受到的摩擦力大小为μmg
C.当该水平拉力增大为原来的1.5倍时,物块c受到的摩擦力大小为0.5μmg
D.剪断轻绳后,在物块b向右运动的过程中,物块c受到的摩擦力大小为μmg
答案 ACD
解析 三物块一起做匀速直线运动,由平衡条件得,对a、b、c系统:F=3μmg,对b、c系统:FT=2μmg,则F>FT,即水平拉力大于轻绳的弹力,故A正确;c做匀速直线运动,处于平衡状态,则c不受摩擦力,故B错误;当水平拉力增大为原来的1.5倍时,F′=1.5F=4.5μmg,由牛顿第二定律得:对a、b、c系统:F′-3μmg=3ma,对c:Ff=ma,解得Ff=0.5 μmg,故C正确;剪断轻绳后,b、c一起做匀减速直线运动,对b、c系统,由牛顿第二定律得:2μmg=2ma′,对c:Ff′=ma′,解得Ff′=μmg,故D正确.
变式6 (多选)(2019·河南省郑州市质检)如图14所示,在粗糙的水平面上,质量分别为m和M的物块A、B用轻弹簧相连,两物块与水平面间的动摩擦因数均为μ,当用水平力F作用于B上且两物块共同向右以加速度a1匀加速运动时,弹簧的伸长量为x1;当用同样大小的恒力F沿着倾角为θ的光滑斜面方向作用于B上且两物块共同以加速度a2匀加速沿斜面向上运动时,弹簧的伸长量为x2,则下列说法中正确的是( )
图14
A.若m>M,有x1=x2 B.若msin θ,有x1>x2 D.若μ