还剩7页未读,
继续阅读
所属成套资源:2020高考理科数学北师大版一轮复习教学案()
成套系列资料,整套一键下载
2020版新一线高考理科数学(北师大版)一轮复习教学案:第5章第3节等比数列及其前n项和
展开
第三节 等比数列及其前n项和
[考纲传真] 1.理解等比数列的概念.2.掌握等比数列的通项公式与前n项和公式.3.能在具体的问题情境中识别数列的等比关系,并能用等比数列的有关知识解决相应的问题.4.了解等比数列与指数函数的关系.
1.等比数列的有关概念
(1)定义:一般地,如果一个数列从第2项起,每一项与它的前一项的比都等于同一个常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q表示,定义的数学表达式为=q(n∈N*,q为非零常数).
(2)等比中项:如果在a与b中间插入一个数G,使得a,G,b成等比数列,那么根据等比数列的定义,=,G2=ab,G=±,那么G叫作a与b的等比中项.即:G是a与b的等比中项⇔a,G,b成等比数列⇔G2=aB.
2.等比数列的有关公式
(1)通项公式:an=a1qn-1=amqn-m.
(2)前n项和公式:
Sn=
1.在等比数列{an}中,若m+n=p+q=2k(m,n,p,q,k∈N*),则am·an=ap·aq=a.
2.若数列{an},{bn}(项数相同)是等比数列,则{λan}(λ≠0),,{a},{an·bn},仍然是等比数列.
3.等比数列{an}的前n项和为Sn,则Sn,S2n-Sn,S3n-S2n仍成等比数列,其公比为qn,其中当公比为-1时,n为偶数时除外.
[基础自测]
1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)
(1)满足an+1=qan(n∈N*,q为常数)的数列{an}为等比数列. ( )
(2)G为a,b的等比中项⇔G2=a B. ( )
(3)若{an}为等比数列,bn=a2n-1+a2n,则数列{bn}也是等比数列.( )
(4)数列{an}的通项公式是an=an,则其前n项和为Sn=. ( )
[答案] (1)× (2)× (3)× (4)×
2.已知{an}是等比数列,a2=2,a5=,则公比q=( )
A.- B.-2 C.2 D.
D [由通项公式及已知得a1q=2①,a1q4=②,
由②÷①得q3=,
解得q=.故选D.]
3.已知数列{an}满足an=an+1,若a3+a4=2,则a4+a5=( )
A. B.1 C.4 D.8
C [∵an=an+1,∴=2.
∴a4+a5=2(a3+a4)=2×2=4.故选C.]
4.等比数列{an}的前n项和为Sn,已知S3=a2+10a1,a5=9,则a1=( )
A. B.- C. D.-
C [∵S3=a2+10a1,∴a1+a2+a3=a2+10a1,∴a3=9a1,即公比q2=9,又a5=a1q4,∴a1===.故选C.]
5.在数列{an}中,a1=2,an+1=2an,Sn为{an}的前n项和.若Sn=126,则n=__________.
6 [∵a1=2,an+1=2an,
∴数列{an}是首项为2,公比为2的等比数列.
又∵Sn=126,∴=126,
解得n=6.]
等比数列的基本运算
1.设Sn为等比数列{an}的前n项和,已知3S3=a4-2,3S2=a3-2,则公比q=( )
A.3 B.4 C.5 D.6
B [因为3S3=a4-2,3S2=a3-2,所以两式相减,得3(S3-S2)=(a4-2)-(a3-2),即3a3=a4-a3,得a4=4a3,所以q==4.]
2.等比数列{an}的各项均为实数,其前n项和为Sn,已知a3=,S3=,则a2=________.
-3或 [法一:∵数列{an}是等比数列,
∴当q=1时,a1=a2=a3=,显然S3=3a3=.
当q≠1时,由题意可知
解得q=-或q=1(舍去).
∴a2==×(-2)=-3.
综上可知a2=-3或.
法二:由a3=得a1+a2=3.
∴+=3,
即2q2-q-1=0,
∴q=-或q=1.
∴a2==-3或.]
3.(2019·济宁模拟)已知等比数列{an}的前n项和为Sn且a1+a3=,a2+a4=,则=________.
2n-1 [设等比数列的公比为q,则
(a1+a3)q=(a2+a4),即q==,
由a1+a3=a1(1+q2)=可知a1=2.
∴an=2·n-1=.
Sn==4.
∴==2n-1.]
[规律方法] 1.等比数列基本量的运算是等比数列中的一类基本问题,等比数列中有五个量a1,n,q,an,Sn,一般可以“知三求二”,通过列方程(组)便可迎刃而解.
2.等比数列的前n项和公式涉及对公比q的分类讨论,当q=1时,{an}的前n项和Sn=na1;当q≠1时,{an}的前n项和Sn==.
等比数列的判定与证明
【例1】 (2018·全国卷Ⅰ)已知数列{an}满足a1=1,nan+1=2(n+1)an.设bn=.
(1)求b1,b2,b3;
(2)判断数列{bn}是否为等比数列,并说明理由;
(3)求{an}的通项公式.
[解] (1)由条件可得an+1=an.
将n=1代入得,a2=4a1,而a1=1,所以,a2=4.
将n=2代入得,a3=3a2,所以,a3=12.
从而b1=1,b2=2,b3=4.
(2){bn}是首项为1,公比为2的等比数列.
由条件可得=,即bn+1=2bn,又b1=1,所以{bn}是首项为1,公比为2的等比数列.
(3)由(2)可得=2n-1,所以an=n·2n-1.
[规律方法] (1)证明一个数列为等比数列常用定义法与等比中项法,其他方法只用于选择题、填空题中的判定;证明某数列不是等比数列,则只要证明存在连续三项不成等比数列即可.
(2)利用递推关系时要注意对n=1时的情况进行验证.
已知数列{an}的前n项和为Sn,a1=1,Sn+1=4an+2(n∈N*),若bn=an+1-2an,
(1)求证:{bn}是等比数列.
(2)求{an}的通项公式.
[解] (1)因为an+2=Sn+2-Sn+1=4an+1+2-4an-2=4an+1-4an,
所以=
===2.
因为S2=a1+a2=4a1+2,所以a2=5.
所以b1=a2-2a1=3.
所以数列{bn}是首项为3,公比为2的等比数列.
(2)由(1)知bn=an+1-2an=3·2n-1,
所以-=,
故是首项为,公差为的等差数列.
所以=+(n-1)·=,
所以an=(3n-1)·2n-2.
等比数列性质的应用
【例2】 (1)等比数列{an}中,已知a1+a3=8,a5+a7=4,则a9+a11+a13+a15的值为( )
A.1 B.2 C.3 D.5
(2)(2019·海口调研)在各项均为正数的等比数列{an}中,若am·am+2=2am+1(m∈N*),数列{an}的前n项积为Tn,且T2m+1=128,则m的值为( )
A.3 B.4 C.5 D.6
(3)等比数列{an}满足an>0,且a2a8=4,则log2a1+log2a2+log2a3+…+log2a9=________.
(1)C (2)A (3)9 [(1)因为{an}为等比数列,所以a5+a7是a1+a3与a9+a11的等比中项,
所以(a5+a7)2=(a1+a3)(a9+a11),
故a9+a11===2;
同理,a9+a11是a5+a7与a13+a15的等比中项,
所以(a9+a11)2=(a5+a7)(a13+a15),
故a13+a15===1.
所以a9+a11+a13+a15=2+1=3.
(2)因为am·am+2=2am+1,所以a=2am+1,即am+1=2,即{an}为常数列.又T2m+1=(am+1)2m+1,由22m+1=128,
得m=3,故选A.
(3)由题意可得a2a8=a=4,a5>0,所以a5=2,则原式=log2(a1a2……a9)=9log2a5=9.]
[规律方法] (1)在解决等比数列的有关问题时,要注意挖掘隐含条件,利用性质,特别是性质“若m+n=p+q,则am·an=ap·aq”,可以减少运算量,提高解题速度.
(2)等比数列的性质可以分为三类:一是通项公式的变形;二是等比中项的变形;三是前n项和公式的变形.根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口.
(1)等比数列{an}的首项a1=-1,前n项和为Sn,若=,则公比q=________.
(2)(2019·石家庄模拟)在等比数列{an}中,若a7+a8+a9+a10=,a8a9=-,则+++=________.
(1)- (2)- [(1)由=,a1=-1知公比q≠1,=-.
由等比数列前n项和的性质知S5,S10-S5,S15-S10成等比数列,且公比为q5,故q5=-,所以q=-.
(2)因为+=,+=,
由等比数列的性质知a7a10=a8a9,
所以+++=
=÷=-.]
1.(2017·全国卷Ⅱ)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )
A.1盏 B.3盏
C.5盏 D.9盏
B [设塔的顶层的灯数为a1,七层塔的总灯数为S7,公比为q,则由题意知S7=381,q=2,
∴S7===381,解得a1=3.
故选B.]
2.(2015·全国卷Ⅱ)已知等比数列{an}满足a1=3,a1+a3+a5=21,则a3+a5+a7=( )
A.21 B.42
C.63 D.84
B [∵a1=3,a1+a3+a5=21,∴3+3q2+3q4=21.
∴1+q2+q4=7.解得q2=2或q2=-3(舍去).
∴a3+a5+a7=q2(a1+a3+a5)=2×21=42.故选B.]
3.(2017·全国卷Ⅲ)设等比数列{an}满足a1+a2=-1,a1-a3=-3,则a4=________.
-8 [设等比数列{an}的公比为q,
∵a1+a2=-1,a1-a3=-3,
∴a1(1+q)=-1,①
a1(1-q2)=-3.②
②÷①,得1-q=3,∴q=-2.
∴a1=1,
∴a4=a1q3=1×(-2)3=-8.]
4.(2016·全国卷Ⅰ)设等比数列{an}满足a1+a3=10,a2+a4=5,则a1a2…an的最大值为________.
64 [设等比数列{an}的公比为q,则由a1+a3=10,a2+a4=q(a1+a3)=5,知q=.又a1+a1q2=10,∴a1=8.
故a1a2…an=aq1+2+…+(n-1)=23n·
=23n-+=2-+n.
记t=-+=-(n2-7n),
结合n∈N*可知n=3或4时,t有最大值6.
又y=2t为增函数,从而a1a2…an的最大值为26=64.]
5.(2018·全国卷Ⅲ)等比数列{an}中,a1=1,a5=4a3.
(1)求{an}的通项公式;
(2)记Sn为{an}的前n项和.若Sm=63,求m.
[解] (1)设{an}的公比为q,由题设得an=qn-1.
由已知得q4=4q2,解得q=0(舍去),q=-2或q=2.
故an=(-2)n-1或an=2n-1.
(2)若an=(-2)n-1,则Sn=.
由Sm=63得(-2)m=-188,此方程没有正整数解.
若an=2n-1,则Sn=2n-1.
由Sm=63得2m=64,解得m=6.
综上,m=6.
第三节 等比数列及其前n项和
[考纲传真] 1.理解等比数列的概念.2.掌握等比数列的通项公式与前n项和公式.3.能在具体的问题情境中识别数列的等比关系,并能用等比数列的有关知识解决相应的问题.4.了解等比数列与指数函数的关系.
1.等比数列的有关概念
(1)定义:一般地,如果一个数列从第2项起,每一项与它的前一项的比都等于同一个常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q表示,定义的数学表达式为=q(n∈N*,q为非零常数).
(2)等比中项:如果在a与b中间插入一个数G,使得a,G,b成等比数列,那么根据等比数列的定义,=,G2=ab,G=±,那么G叫作a与b的等比中项.即:G是a与b的等比中项⇔a,G,b成等比数列⇔G2=aB.
2.等比数列的有关公式
(1)通项公式:an=a1qn-1=amqn-m.
(2)前n项和公式:
Sn=
1.在等比数列{an}中,若m+n=p+q=2k(m,n,p,q,k∈N*),则am·an=ap·aq=a.
2.若数列{an},{bn}(项数相同)是等比数列,则{λan}(λ≠0),,{a},{an·bn},仍然是等比数列.
3.等比数列{an}的前n项和为Sn,则Sn,S2n-Sn,S3n-S2n仍成等比数列,其公比为qn,其中当公比为-1时,n为偶数时除外.
[基础自测]
1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)
(1)满足an+1=qan(n∈N*,q为常数)的数列{an}为等比数列. ( )
(2)G为a,b的等比中项⇔G2=a B. ( )
(3)若{an}为等比数列,bn=a2n-1+a2n,则数列{bn}也是等比数列.( )
(4)数列{an}的通项公式是an=an,则其前n项和为Sn=. ( )
[答案] (1)× (2)× (3)× (4)×
2.已知{an}是等比数列,a2=2,a5=,则公比q=( )
A.- B.-2 C.2 D.
D [由通项公式及已知得a1q=2①,a1q4=②,
由②÷①得q3=,
解得q=.故选D.]
3.已知数列{an}满足an=an+1,若a3+a4=2,则a4+a5=( )
A. B.1 C.4 D.8
C [∵an=an+1,∴=2.
∴a4+a5=2(a3+a4)=2×2=4.故选C.]
4.等比数列{an}的前n项和为Sn,已知S3=a2+10a1,a5=9,则a1=( )
A. B.- C. D.-
C [∵S3=a2+10a1,∴a1+a2+a3=a2+10a1,∴a3=9a1,即公比q2=9,又a5=a1q4,∴a1===.故选C.]
5.在数列{an}中,a1=2,an+1=2an,Sn为{an}的前n项和.若Sn=126,则n=__________.
6 [∵a1=2,an+1=2an,
∴数列{an}是首项为2,公比为2的等比数列.
又∵Sn=126,∴=126,
解得n=6.]
等比数列的基本运算
1.设Sn为等比数列{an}的前n项和,已知3S3=a4-2,3S2=a3-2,则公比q=( )
A.3 B.4 C.5 D.6
B [因为3S3=a4-2,3S2=a3-2,所以两式相减,得3(S3-S2)=(a4-2)-(a3-2),即3a3=a4-a3,得a4=4a3,所以q==4.]
2.等比数列{an}的各项均为实数,其前n项和为Sn,已知a3=,S3=,则a2=________.
-3或 [法一:∵数列{an}是等比数列,
∴当q=1时,a1=a2=a3=,显然S3=3a3=.
当q≠1时,由题意可知
解得q=-或q=1(舍去).
∴a2==×(-2)=-3.
综上可知a2=-3或.
法二:由a3=得a1+a2=3.
∴+=3,
即2q2-q-1=0,
∴q=-或q=1.
∴a2==-3或.]
3.(2019·济宁模拟)已知等比数列{an}的前n项和为Sn且a1+a3=,a2+a4=,则=________.
2n-1 [设等比数列的公比为q,则
(a1+a3)q=(a2+a4),即q==,
由a1+a3=a1(1+q2)=可知a1=2.
∴an=2·n-1=.
Sn==4.
∴==2n-1.]
[规律方法] 1.等比数列基本量的运算是等比数列中的一类基本问题,等比数列中有五个量a1,n,q,an,Sn,一般可以“知三求二”,通过列方程(组)便可迎刃而解.
2.等比数列的前n项和公式涉及对公比q的分类讨论,当q=1时,{an}的前n项和Sn=na1;当q≠1时,{an}的前n项和Sn==.
等比数列的判定与证明
【例1】 (2018·全国卷Ⅰ)已知数列{an}满足a1=1,nan+1=2(n+1)an.设bn=.
(1)求b1,b2,b3;
(2)判断数列{bn}是否为等比数列,并说明理由;
(3)求{an}的通项公式.
[解] (1)由条件可得an+1=an.
将n=1代入得,a2=4a1,而a1=1,所以,a2=4.
将n=2代入得,a3=3a2,所以,a3=12.
从而b1=1,b2=2,b3=4.
(2){bn}是首项为1,公比为2的等比数列.
由条件可得=,即bn+1=2bn,又b1=1,所以{bn}是首项为1,公比为2的等比数列.
(3)由(2)可得=2n-1,所以an=n·2n-1.
[规律方法] (1)证明一个数列为等比数列常用定义法与等比中项法,其他方法只用于选择题、填空题中的判定;证明某数列不是等比数列,则只要证明存在连续三项不成等比数列即可.
(2)利用递推关系时要注意对n=1时的情况进行验证.
已知数列{an}的前n项和为Sn,a1=1,Sn+1=4an+2(n∈N*),若bn=an+1-2an,
(1)求证:{bn}是等比数列.
(2)求{an}的通项公式.
[解] (1)因为an+2=Sn+2-Sn+1=4an+1+2-4an-2=4an+1-4an,
所以=
===2.
因为S2=a1+a2=4a1+2,所以a2=5.
所以b1=a2-2a1=3.
所以数列{bn}是首项为3,公比为2的等比数列.
(2)由(1)知bn=an+1-2an=3·2n-1,
所以-=,
故是首项为,公差为的等差数列.
所以=+(n-1)·=,
所以an=(3n-1)·2n-2.
等比数列性质的应用
【例2】 (1)等比数列{an}中,已知a1+a3=8,a5+a7=4,则a9+a11+a13+a15的值为( )
A.1 B.2 C.3 D.5
(2)(2019·海口调研)在各项均为正数的等比数列{an}中,若am·am+2=2am+1(m∈N*),数列{an}的前n项积为Tn,且T2m+1=128,则m的值为( )
A.3 B.4 C.5 D.6
(3)等比数列{an}满足an>0,且a2a8=4,则log2a1+log2a2+log2a3+…+log2a9=________.
(1)C (2)A (3)9 [(1)因为{an}为等比数列,所以a5+a7是a1+a3与a9+a11的等比中项,
所以(a5+a7)2=(a1+a3)(a9+a11),
故a9+a11===2;
同理,a9+a11是a5+a7与a13+a15的等比中项,
所以(a9+a11)2=(a5+a7)(a13+a15),
故a13+a15===1.
所以a9+a11+a13+a15=2+1=3.
(2)因为am·am+2=2am+1,所以a=2am+1,即am+1=2,即{an}为常数列.又T2m+1=(am+1)2m+1,由22m+1=128,
得m=3,故选A.
(3)由题意可得a2a8=a=4,a5>0,所以a5=2,则原式=log2(a1a2……a9)=9log2a5=9.]
[规律方法] (1)在解决等比数列的有关问题时,要注意挖掘隐含条件,利用性质,特别是性质“若m+n=p+q,则am·an=ap·aq”,可以减少运算量,提高解题速度.
(2)等比数列的性质可以分为三类:一是通项公式的变形;二是等比中项的变形;三是前n项和公式的变形.根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口.
(1)等比数列{an}的首项a1=-1,前n项和为Sn,若=,则公比q=________.
(2)(2019·石家庄模拟)在等比数列{an}中,若a7+a8+a9+a10=,a8a9=-,则+++=________.
(1)- (2)- [(1)由=,a1=-1知公比q≠1,=-.
由等比数列前n项和的性质知S5,S10-S5,S15-S10成等比数列,且公比为q5,故q5=-,所以q=-.
(2)因为+=,+=,
由等比数列的性质知a7a10=a8a9,
所以+++=
=÷=-.]
1.(2017·全国卷Ⅱ)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )
A.1盏 B.3盏
C.5盏 D.9盏
B [设塔的顶层的灯数为a1,七层塔的总灯数为S7,公比为q,则由题意知S7=381,q=2,
∴S7===381,解得a1=3.
故选B.]
2.(2015·全国卷Ⅱ)已知等比数列{an}满足a1=3,a1+a3+a5=21,则a3+a5+a7=( )
A.21 B.42
C.63 D.84
B [∵a1=3,a1+a3+a5=21,∴3+3q2+3q4=21.
∴1+q2+q4=7.解得q2=2或q2=-3(舍去).
∴a3+a5+a7=q2(a1+a3+a5)=2×21=42.故选B.]
3.(2017·全国卷Ⅲ)设等比数列{an}满足a1+a2=-1,a1-a3=-3,则a4=________.
-8 [设等比数列{an}的公比为q,
∵a1+a2=-1,a1-a3=-3,
∴a1(1+q)=-1,①
a1(1-q2)=-3.②
②÷①,得1-q=3,∴q=-2.
∴a1=1,
∴a4=a1q3=1×(-2)3=-8.]
4.(2016·全国卷Ⅰ)设等比数列{an}满足a1+a3=10,a2+a4=5,则a1a2…an的最大值为________.
64 [设等比数列{an}的公比为q,则由a1+a3=10,a2+a4=q(a1+a3)=5,知q=.又a1+a1q2=10,∴a1=8.
故a1a2…an=aq1+2+…+(n-1)=23n·
=23n-+=2-+n.
记t=-+=-(n2-7n),
结合n∈N*可知n=3或4时,t有最大值6.
又y=2t为增函数,从而a1a2…an的最大值为26=64.]
5.(2018·全国卷Ⅲ)等比数列{an}中,a1=1,a5=4a3.
(1)求{an}的通项公式;
(2)记Sn为{an}的前n项和.若Sm=63,求m.
[解] (1)设{an}的公比为q,由题设得an=qn-1.
由已知得q4=4q2,解得q=0(舍去),q=-2或q=2.
故an=(-2)n-1或an=2n-1.
(2)若an=(-2)n-1,则Sn=.
由Sm=63得(-2)m=-188,此方程没有正整数解.
若an=2n-1,则Sn=2n-1.
由Sm=63得2m=64,解得m=6.
综上,m=6.
相关资料
更多