![2021届浙江省高考数学一轮学案:第五章第7节 函数y=Asin(ωx+φ)的图象及应用第1页](http://img-preview.51jiaoxi.com/3/3/5749981/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021届浙江省高考数学一轮学案:第五章第7节 函数y=Asin(ωx+φ)的图象及应用第2页](http://img-preview.51jiaoxi.com/3/3/5749981/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021届浙江省高考数学一轮学案:第五章第7节 函数y=Asin(ωx+φ)的图象及应用第3页](http://img-preview.51jiaoxi.com/3/3/5749981/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:2021高考数学浙江省一轮学案
2021届浙江省高考数学一轮学案:第五章第7节 函数y=Asin(ωx+φ)的图象及应用
展开
第7节 函数y=Asin(ωx+φ)的图象及应用
考试要求 1.了解函数y=Asin(ωx+φ)的物理意义;能画出y=Asin(ωx+φ)的图象,了解参数A,ω,φ对函数图象变化的影响;2.会用三角函数解决一些简单实际问题,体会三角函数是描述周期变化现象的重要函数模型.
知 识 梳 理
1.“五点法”作函数y=Asin(ωx+φ)(A>0,ω>0)的简图
“五点法”作图的五点是在一个周期内的最高点、最低点及与x轴相交的三个点,作图时的一般步骤为:
(1)定点:如下表所示.
x
-
ωx+φ
0
π
2π
y=Asin(ωx+φ)
0
A
0
-A
0
(2)作图:在坐标系中描出这五个关键点,用平滑的曲线顺次连接得到y=Asin(ωx+φ)在一个周期内的图象.
(3)扩展:将所得图象,按周期向两侧扩展可得y=Asin(ωx+φ)在R上的图象.
2.函数y=Asin(ωx+φ)中各量的物理意义
当函数y=Asin(ωx+φ)(A>0,ω>0),x∈[0,+∞)表示简谐振动时,几个相关的概念如下表:
简谐振动
振幅
周期
频率
相位
初相
y=Asin(ωx+φ)(A>0,ω>0),
x∈[0,+∞)
A
T=
f=
ωx+φ
φ
3.函数y=sin x的图象经变换得到y=Asin(ωx+φ)的图象的两种途径
[常用结论与易错提醒]
1.由函数y=sin x的图象经过变换得到y=Asin(ωx+φ)的图象,如先伸缩再平移时,要把x前面的系数提取出来.
2.复合形式的三角函数的单调区间的求法.函数y=Asin(ωx+φ)(A>0,ω>0)的单调区间的确定,基本思想是把ωx+φ看作一个整体.若ω0,ω>0,00,-π
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)