还剩16页未读,
继续阅读
所属成套资源:2021高考数学浙江省一轮学案
成套系列资料,整套一键下载
2021届浙江省高考数学一轮学案:第八章第6节 空间向量及其运算
展开
第6节 空间向量及其运算
考试要求 1.了解空间向量的概念,了解空间向量的基本定理及其意义,了解空间向量的正交分解及其坐标表示;2.了解空间向量的线性运算及其坐标表示;3.了解空间向量的数量积及其坐标表示;4.掌握空间两点间的距离公式,会求向量的长度、两向量的夹角.
知 识 梳 理
1.空间向量的有关概念
名称
概念
表示
零向量
模为0的向量
0
单位向量
长度(模)为1的向量
相等向量
方向相同且模相等的向量
a=b
相反向量
方向相反且模相等的向量
a的相反向量为-a
共线向量
表示空间向量的有向线段所在的直线互相平行或重合的向量
a∥b
共面向量
平行于同一个平面的向量
2.空间向量中的有关定理
(1)共线向量定理
空间两个向量a(a≠0)与b共线的充要条件是存在实数λ,使得b=λa.
推论 如图所示,点P在l上的充要条件是=+ta ①
其中a叫直线l的方向向量,t∈R,在l上取=a,则①可化为=+t或=(1-t)+t.
(2)共面向量定理
共面向量定理的向量表达式:p=xa+yb,其中x,y∈R,a,b为不共线向量,推论的表达式为=x+y或对空间任意一点O,有=+x+y或=x+y+z,其中x+y+z=1.
(3)空间向量基本定理
如果向量e1,e2,e3是空间三个不共面的向量,a是空间任一向量,那么存在唯一一组实数λ1,λ2,λ3,使得a=λ1e1+λ2e2+λ3e3,空间中不共面的三个向量e1,e2,e3叫作这个空间的一个基底.
3.空间向量的数量积及运算律
(1)数量积及相关概念
①两向量的夹角
已知两个非零向量a,b,在空间任取一点O,作=a,=b,则∠AOB叫做向量a与b的夹角,记作〈a,b〉,其范围是[0,π],若〈a,b〉=,则称a与b互相垂直,记作a⊥b.
②两向量的数量积
已知空间两个非零向量a,b,则|a||b|cos〈a,b〉叫做向量a,b的数量积,记作a·b,即a·b=|a||b|cos〈a,b〉.
(2)空间向量数量积的运算律
①结合律:(λa)·b=λ(a·b);
②交换律:a·b=b·a;
③分配律:a·(b+c)=a·b+a·c.
4.空间向量的坐标表示及其应用
设a=(a1,a2,a3),b=(b1,b2,b3).
向量表示
坐标表示
数量积
a·b
a1b1+a2b2+a3b3
共线
a=λb(b≠0,λ∈R)
a1=λb1,a2=λb2,a3=λb3
垂直
a·b=0(a≠0,b≠0)
a1b1+a2b2+a3b3=0
模
|a|
夹角
〈a,b〉(a≠0,b≠0)
cos〈a,b〉=
5.空间两点间的距离公式
空间中点P1(x1,y1,z1),P2(x2,y2,z2)之间的距离|P1P2|=.
[常用结论与易错提醒]
1.a·b=0⇔a=0或b=0或〈a,b〉=.
2.a·b<0不等价为〈a,b〉为钝角,因为〈a,b〉可能为180°;a·b>0不等价为〈a,b〉为锐角,因为〈a,b〉可能为0°.
诊 断 自 测
1.判断下列说法的正误.
(1)空间中任意两非零向量a,b共面.( )
(2)对任意两个空间向量a,b,若a·b=0,则a⊥b.( )
(3)若{a,b,c}是空间的一个基底,则a,b,c中至多有一个零向量.( )
(4)若a·b<0,则〈a,b〉是钝角.( )
解析 对于(2),因为0与任何向量数量积为0,所以(2)不正确;对于(3),若a,b,c中有一个是0,则a,b,c共面,所以(3)不正确;对于(4),若〈a,b〉=π,则a·b<0,故(4)不正确.
答案 (1)√ (2)× (3)× (4)×
2.在空间直角坐标系中,A(1,2,3),B(-2,-1,6),C(3,2,1),D(4,3,0),则直线AB与CD的位置关系是( )
A.垂直 B.平行
C.异面 D.相交但不垂直
解析 由题意得=(-3,-3,3),=(1,1,-1),∴=-3,∴与共线,又AB与CD没有公共点.∴AB∥CD.
答案 B
3.(选修2-1P97A2改编)如图所示,在平行六面体ABCDA1B1C1D1中,M为A1C1与B1D1的交点.若=a,=b,1=c,则下列向量中与相等的向量是( )
A.-a+b+c B.a+b+c
C.-a-b+c D.a-b+c
解析 由题意,根据向量运算的几何运算法则,=1+=1+(-)=c+(b-a)=-a+b+c.
答案 A
4.(2017·上海卷)如图,以长方体ABCD-A1B1C1D1的顶点D为坐标原点,过D的三条棱所在的直线为坐标轴,建立空间直角坐标系,若的坐标为(4,3,2),则的坐标为________.
解析 A(4,0,0),C1(0,3,2),=(-4,3,2).
答案 (-4,3,2)
5.已知O为空间中任意一点,A,B,C三点不共线,且=++t,若P,A,B,C四点共面,则实数t=________.
解析 ∵P,A,B,C四点共面,∴++t=1,∴t=.
答案
6.已知i,j,k为两两垂直的单位向量,非零向量a=a1i+a2j+a3k(a1,a2,a3∈R),若向量a与向量i,j,k的夹角分别为α,β,γ,则cos2α+cos2β+cos2γ=________.
解析 设i,j,k为长方体的共顶点的三条棱的方向向量,因非零向量a=a1i+a2j+a3k(a1,a2,a3∈R),故a可为长方体体对角线的方向向量,
则α=∠xEA,β=∠yEA,γ=∠zEA,
所以cos α=cos∠xEA=cos∠CAE=,
cos β=cos∠yEA=cos∠DAE=,
cos γ=cos∠zEA=cos∠EAB=,
cos2α+cos2β+cos2γ===1.
答案 1
考点一 空间向量的线性运算
【例1】 如图所示,在空间几何体ABCD-A1B1C1D1中,各面为平行四边形,设=a,=b,=c,M,N,P分别是AA1,BC,C1D1的中点,试用a,b,c表示以下各向量:
(1);(2)+.
解 (1)因为P是C1D1的中点,所以=++=a++
=a+c+=a+c+b.
(2)因为M是AA1的中点,所以=+
=+
=-a+=a+b+c.
又=+=+
=+=c+a,
所以+=+
=a+b+c.
规律方法 (1)选定空间不共面的三个向量作基向量,这是用向量解决立体几何问题的基本要求.用已知基向量表示指定向量时,应结合已知和所求向量观察图形,将已知向量和未知向量转化至三角形或平行四边形中,然后利用三角形法则或平行四边形法则进行运算.
(2)首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量,我们把这个法则称为向量加法的多边形法则.
提醒 空间向量的线性运算类似于平面向量中的线性运算.
【训练1】 如图,三棱锥O-ABC中,M,N分别是AB,OC的中点,设=a,=b,=c,用a,b,c表示,则=( )
A.(-a+b+c) B.(a+b-c)
C.(a-b+c) D.(-a-b+c)
解析 =+=(-)+
=-+(-)=+-
=(a+b-c).
答案 B
考点二 共线定理、共面定理的应用
【例2】 已知A,B,C三点不共线,对平面ABC外的任一点O,若点M满足=(++).
(1)判断,,三个向量是否共面;
(2)判断点M是否在平面ABC内.
解 (1)由题意知++=3,
所以-=(-)+(-),
即=+=--,
所以,,共面.
(2)由(1)知,,共面且过同一点M,
所以M,A,B,C四点共面.
从而点M在平面ABC内.
规律方法 (1)证明空间三点P,A,B共线的方法
①=λ(λ∈R);
②对空间任一点O,=x+y(x+y=1).
(2)证明空间四点P,M,A,B共面的方法
①=x+y;
②对空间任一点O,=x+y+z(x+y+z=1);
③∥(或∥或∥).
(3)三点共线通常转化为向量共线,四点共面通常转化为向量共面,线面平行可转化为向量共线、共面来证明.
【训练2】 (1)若A(-1,2,3),B(2,1,4),C(m,n,1)三点共线,则m+n=________.
(2)已知空间四点A(-2,0,2),B(-1,1,2),C(-3,0,4),D(1,2,t),若四点共面,则t的值为________.
解析 (1)=(3,-1,1),=(m+1,n-2,-2).
∵A,B,C三点共线,∴∥,
∴==,
∴m=-7,n=4,∴m+n=-3.
(2)=(1,1,0),=(-1,0,2),=(3,2,t-2),
∵A,B,C,D四点共面,∴,,共面.
设=x+y,
即(3,2,t-2)=(x-y,x,2y),
则解得∴t的值为0.
答案 (1)-3 (2)0
考点三 空间向量数量积及其应用
【例3】 如图,在平行六面体ABCD-A1B1C1D1中,以顶点A为端点的三条棱长度都为1,且两两夹角为60°.
(1)求AC1的长;
(2)求与夹角的余弦值.
解 (1)记=a,=b,=c,
则|a|=|b|=|c|=1,〈a,b〉=〈b,c〉=〈c,a〉=60°,
所以a·b=b·c=c·a=.
||2=(a+b+c)2
=a2+b2+c2+2(a·b+b·c+c·a)
=1+1+1+2×
=6,
所以||=,即AC1的长为.
(2)=b+c-a,=a+b,
所以||=,||=,
·=(b+c-a)·(a+b)
=b2-a2+a·c+b·c=1,
所以cos〈,〉==.
即与夹角的余弦值为.
规律方法 利用数量积解决问题的两条途径:一是根据数量积的定义,利用模与夹角直接计算;二是利用坐标运算.可解决有关垂直、夹角、长度问题.
(1)a≠0,b≠0,a⊥b⇔a·b=0;
(2)|a|=;
(3)cos〈a,b〉=.
【训练3】 正方体ABCD-A1B1C1D1的棱长为2,MN是其内切球O的一条直径,E是正方体表面上一点,求·的最大值.
解 由极化恒等式的三角形形式得
·=[(2)2-2].
又因为MN是其内切球O的一条直径,E是正方体表面上的动点,所以||=2,||≤,所以·=[(2)2-4]≤2,
所以·的最大值为2.
基础巩固题组
一、选择题
1.已知向量a=(2m+1,3,m-1),b=(2,m,-m),且a∥b,则实数m的值等于( )
A. B.-2
C.0 D.或-2
解析 ∵a∥b,∴==,解得m=-2.
答案 B
2.在正方体ABCD-A1B1C1D1中,M,N分别为棱AA1和BB1的中点,则sin〈,〉的值为( )
A. B.
C. D.
解析 如图,设正方体棱长为2,则易得=(2,-2,1),=(2,2,-1),∴cos〈,〉
==-,又〈,〉∈[0,π],
∴sin〈,〉==.
答案 B
3.已知向量a=(1,1,0),b=(-1,0,2),且ka+b与2a-b互相垂直,则k的值是( )
A.-1 B.
C. D.
解析 由题意得ka+b=(k-1,k,2),2a-b=(3,2,-2).所以(ka+b)·(2a-b)=3(k-1)+2k-2×2=5k-7=0,解得k=.
答案 D
4.已知空间四边形ABCD的各边和对角线均相等,E是BC的中点,那么( )
A.·<·
B.·=·
C.·>·
D.·与·的大小不能比较
解析 取BD的中点F,连接EF,则EF綉CD,因为〈,〉=〈,〉>90°,因为·=0,∴·<0,所以·>·.
答案 C
5.已知空间四边形ABCD的每条边和对角线的长都等于a,点E,F分别是BC,AD的中点,则·的值为( )
A.a2 B.a2
C.a2 D.a2
解析 如图,设=a,=b,=c,
则|a|=|b|=|c|=a,且a,b,c三向量两两夹角为60°.
=(a+b),=c,
∴·=(a+b)·c
=(a·c+b·c)
=(a2cos 60°+a2cos 60°)=a2.
答案 C
6.如图所示,在平行六面体ABCDA1B1C1D1中,点M,P,Q分别为棱AB,CD,BC的中点,若平行六面体的各棱长均相等,则:
①A1M∥D1P;
②A1M∥B1Q;
③A1M∥平面DCC1D1;
④A1M∥平面D1PQB1.
以上说法正确的个数为( )
A.1 B.2
C.3 D.4
解析 =+=+,=+=+,∴∥,所以A1M∥D1P,又D1P⊂平面DCC1D1,D1P⊂平面D1PQB1,A1M⊄平面DCC1D1,A1M⊄平面D1PQB1,由线面平行的判定定理可知,A1M∥平面DCC1D1,A1M∥平面D1PQB1.①③④正确.
答案 C
二、填空题
7.已知2a+b=(0,-5,10),c=(1,-2,-2),a·c=4,|b|=12,则b,c的夹角为________.
解析 由题意得(2a+b)·c=0+10-20=-10.
即2a·c+b·c=-10,又∵a·c=4,∴b·c=-18,
∴cos〈b,c〉===-,
0°≤〈b,c〉≤180°,
∴〈b,c〉=120°.
答案 120°
8.已知a=(-2,1,3),b=(-1,2,1),a与b夹角的余弦值为________;若a⊥(a-λb),则λ=________.
解析 ∵a=(-2,1,3),b=(-1,2,1),∴cos〈a,b〉===;由题意a·(a-λb)=0,即a2-λa·b=0,又a2=14,a·b=7,∴14-7λ=0,∴λ=2.
答案 2
9.已知=(1,5,-2),=(3,1,z),若⊥,=(x-1,y,-3),且BP⊥平面ABC,则x=________,y=________,z=________.
解析 由条件得
解得x=,y=-,z=4.
答案 - 4
10.设A1,A2,A3,A4,A5是空间中给定的5个不同的点,则使=0成立的点M的个数有________.
解析 设M(a,b,c),Ak(xk,yk,zk)(k=1,2,3,4,5).
则=(xk-a,yk-b,zk-c),
∴由=0得
∴∴存在唯一点M.
答案 1
三、解答题
11.如图,已知平行六面体ABCD-A′B′C′D′.试用′表示+′+′.
解 ∵平行六面体的六个面均为平行四边形,
∴在▱ABCD中,=+,
在▱ABB′A′中,′=+′,
在▱ADD′A′中,′=+′,
∴+′+′=(+)+(+′)+(+′)=2(++).
又∵在▱ABCD中,=,
在▱ACC′A′中,′=′,
∴++′=++′=′,
∴+′+′=2′.
12.已知空间中三点A(-2,0,2),B(-1,1,2),C(-3,0,4),设a=,b=.
(1)若|c|=3,且c∥,求向量c.
(2)求向量a与向量b的夹角的余弦值.
解 (1)∵c∥,=(-3,0,4)-(-1,1,2)=(-2,-1,2),
∴c=m=m(-2,-1,2)=(-2m,-m,2m),
∴|c|==3|m|=3,
∴m=±1.∴c=(-2,-1,2)或(2,1,-2).
(2)∵a=(1,1,0),b=(-1,0,2),
∴a·b=(1,1,0)·(-1,0,2)=-1,
又∵|a|==,
|b|==,
∴cos〈a,b〉===-,
即向量a与向量b的夹角的余弦值为-.
能力提升题组
13.在空间四边形ABCD中,·+·+·=( )
A.-1 B.0
C.1 D.不确定
解析 如图,令=a,=b,=c,则·+·+·
=a·(c-b)+b·(a-c)+c·(b-a)
=a·c-a·b+b·a-b·c+c·b-c·a=0.
答案 B
14.若{a,b,c}是空间的一个基底,且向量p=xa+yb+zc,则(x,y,z)叫向量p在基底{a,b,c}下的坐标.
已知{a,b,c}是空间的一个基底,{a+b,a-b,c}是空间的另一个基底,一向量p在基底{a,b,c}下的坐标为(4,2,3),则向量p在基底{a+b,a-b,c}下的坐标是( )
A.(4,0,3) B.(3,1,3)
C.(1,2,3) D.(2,1,3)
解析 设p在基底{a+b,a-b,c}下的坐标为(x,y,z).则
p=x(a+b)+y(a-b)+zc=(x+y)a+(x-y)b+zc,①
因为p在{a,b,c}下的坐标为(4,2,3),
∴p=4a+2b+3c,②
由①②得∴
即p在{a+b,a-b,c}下的坐标为(3,1,3).
答案 B
15.已知O点为空间直角坐标系的原点,向量=(1,2,3),=(2,1,2),=(1,1,2),且点Q在直线OP上运动,当·取得最小值时,的坐标是__________.
解析 ∵点Q在直线OP上,∴设点Q(λ,λ,2λ),
则=(1-λ,2-λ,3-2λ),=(2-λ,1-λ,2-2λ),
·=(1-λ)(2-λ)+(2-λ)(1-λ)+(3-2λ)(2-2λ)=6λ2-16λ+10=6-.
即当λ=时,·取得最小值-.
此时=.
答案
16.已知空间向量,,的模长分别为1,2,3,且两两夹角均为60°.点G为△ABC的重心,若=x+y+z,x,y,z∈R,则x+y+z=________.||=________.
解析 因为A,B,C,G四点共面,所以x+y+z=1,则z=1-x-y,=+=+(+)=+[(-)+(-)]=++PC=(++),∴x=y=z=,||=
=×
=.
答案 1
17.如图,在棱长为a的正方体OABC-O1A1B1C1中,E,F分别是棱AB,BC上的动点,且AE=BF=x,其中0≤x≤a,以O为原点建立空间直角坐标系O-xyz.
(1)写出点E,F的坐标;
(2)求证:⊥;
(3)若A1,E,F,C1四点共面,求证:=+.
(1)解 E(a,x,0),F(a-x,a,0).
(2)证明 ∵A1(a,0,a),C1(0,a,a),
∴=(-x,a,-a),=(a,x-a,-a),
∴·=-ax+a(x-a)+a2=0,
∴⊥.
(3)证明 ∵A1,E,F,C1四点共面,
∴,,共面.
选与为在平面A1C1E上的一组基向量,则存在唯一实数对(λ1,λ2),使=λ1+λ2,
即(-x,a,-a)=λ1(-a,a,0)+λ2(0,x,-a)
=(-aλ1,aλ1+xλ2,-aλ2),
∴
解得λ1=,λ2=1.
于是=+.
18.如图所示,已知空间四边形ABCD的每条边和对角线长都等于1,点E,F,G分别是AB,AD,CD的中点,计算:
(1)·;(2)的长;
(3)与所成角的余弦值.
解 设=a,=b,=c.
则|a|=|b|=|c|=1,〈a,b〉=〈b,c〉=〈c,a〉=60°,
(1)==c-a,=-a,
·=·(-a)=a2-a·c=,
(2)=++=a+b-a+c-b
=-a+b+c,
||2=a2+b2+c2-a·b+b·c-c·a=,则||=.
(3)=b+c,=+=-b+a,
cos〈,〉==-.
第6节 空间向量及其运算
考试要求 1.了解空间向量的概念,了解空间向量的基本定理及其意义,了解空间向量的正交分解及其坐标表示;2.了解空间向量的线性运算及其坐标表示;3.了解空间向量的数量积及其坐标表示;4.掌握空间两点间的距离公式,会求向量的长度、两向量的夹角.
知 识 梳 理
1.空间向量的有关概念
名称
概念
表示
零向量
模为0的向量
0
单位向量
长度(模)为1的向量
相等向量
方向相同且模相等的向量
a=b
相反向量
方向相反且模相等的向量
a的相反向量为-a
共线向量
表示空间向量的有向线段所在的直线互相平行或重合的向量
a∥b
共面向量
平行于同一个平面的向量
2.空间向量中的有关定理
(1)共线向量定理
空间两个向量a(a≠0)与b共线的充要条件是存在实数λ,使得b=λa.
推论 如图所示,点P在l上的充要条件是=+ta ①
其中a叫直线l的方向向量,t∈R,在l上取=a,则①可化为=+t或=(1-t)+t.
(2)共面向量定理
共面向量定理的向量表达式:p=xa+yb,其中x,y∈R,a,b为不共线向量,推论的表达式为=x+y或对空间任意一点O,有=+x+y或=x+y+z,其中x+y+z=1.
(3)空间向量基本定理
如果向量e1,e2,e3是空间三个不共面的向量,a是空间任一向量,那么存在唯一一组实数λ1,λ2,λ3,使得a=λ1e1+λ2e2+λ3e3,空间中不共面的三个向量e1,e2,e3叫作这个空间的一个基底.
3.空间向量的数量积及运算律
(1)数量积及相关概念
①两向量的夹角
已知两个非零向量a,b,在空间任取一点O,作=a,=b,则∠AOB叫做向量a与b的夹角,记作〈a,b〉,其范围是[0,π],若〈a,b〉=,则称a与b互相垂直,记作a⊥b.
②两向量的数量积
已知空间两个非零向量a,b,则|a||b|cos〈a,b〉叫做向量a,b的数量积,记作a·b,即a·b=|a||b|cos〈a,b〉.
(2)空间向量数量积的运算律
①结合律:(λa)·b=λ(a·b);
②交换律:a·b=b·a;
③分配律:a·(b+c)=a·b+a·c.
4.空间向量的坐标表示及其应用
设a=(a1,a2,a3),b=(b1,b2,b3).
向量表示
坐标表示
数量积
a·b
a1b1+a2b2+a3b3
共线
a=λb(b≠0,λ∈R)
a1=λb1,a2=λb2,a3=λb3
垂直
a·b=0(a≠0,b≠0)
a1b1+a2b2+a3b3=0
模
|a|
夹角
〈a,b〉(a≠0,b≠0)
cos〈a,b〉=
5.空间两点间的距离公式
空间中点P1(x1,y1,z1),P2(x2,y2,z2)之间的距离|P1P2|=.
[常用结论与易错提醒]
1.a·b=0⇔a=0或b=0或〈a,b〉=.
2.a·b<0不等价为〈a,b〉为钝角,因为〈a,b〉可能为180°;a·b>0不等价为〈a,b〉为锐角,因为〈a,b〉可能为0°.
诊 断 自 测
1.判断下列说法的正误.
(1)空间中任意两非零向量a,b共面.( )
(2)对任意两个空间向量a,b,若a·b=0,则a⊥b.( )
(3)若{a,b,c}是空间的一个基底,则a,b,c中至多有一个零向量.( )
(4)若a·b<0,则〈a,b〉是钝角.( )
解析 对于(2),因为0与任何向量数量积为0,所以(2)不正确;对于(3),若a,b,c中有一个是0,则a,b,c共面,所以(3)不正确;对于(4),若〈a,b〉=π,则a·b<0,故(4)不正确.
答案 (1)√ (2)× (3)× (4)×
2.在空间直角坐标系中,A(1,2,3),B(-2,-1,6),C(3,2,1),D(4,3,0),则直线AB与CD的位置关系是( )
A.垂直 B.平行
C.异面 D.相交但不垂直
解析 由题意得=(-3,-3,3),=(1,1,-1),∴=-3,∴与共线,又AB与CD没有公共点.∴AB∥CD.
答案 B
3.(选修2-1P97A2改编)如图所示,在平行六面体ABCDA1B1C1D1中,M为A1C1与B1D1的交点.若=a,=b,1=c,则下列向量中与相等的向量是( )
A.-a+b+c B.a+b+c
C.-a-b+c D.a-b+c
解析 由题意,根据向量运算的几何运算法则,=1+=1+(-)=c+(b-a)=-a+b+c.
答案 A
4.(2017·上海卷)如图,以长方体ABCD-A1B1C1D1的顶点D为坐标原点,过D的三条棱所在的直线为坐标轴,建立空间直角坐标系,若的坐标为(4,3,2),则的坐标为________.
解析 A(4,0,0),C1(0,3,2),=(-4,3,2).
答案 (-4,3,2)
5.已知O为空间中任意一点,A,B,C三点不共线,且=++t,若P,A,B,C四点共面,则实数t=________.
解析 ∵P,A,B,C四点共面,∴++t=1,∴t=.
答案
6.已知i,j,k为两两垂直的单位向量,非零向量a=a1i+a2j+a3k(a1,a2,a3∈R),若向量a与向量i,j,k的夹角分别为α,β,γ,则cos2α+cos2β+cos2γ=________.
解析 设i,j,k为长方体的共顶点的三条棱的方向向量,因非零向量a=a1i+a2j+a3k(a1,a2,a3∈R),故a可为长方体体对角线的方向向量,
则α=∠xEA,β=∠yEA,γ=∠zEA,
所以cos α=cos∠xEA=cos∠CAE=,
cos β=cos∠yEA=cos∠DAE=,
cos γ=cos∠zEA=cos∠EAB=,
cos2α+cos2β+cos2γ===1.
答案 1
考点一 空间向量的线性运算
【例1】 如图所示,在空间几何体ABCD-A1B1C1D1中,各面为平行四边形,设=a,=b,=c,M,N,P分别是AA1,BC,C1D1的中点,试用a,b,c表示以下各向量:
(1);(2)+.
解 (1)因为P是C1D1的中点,所以=++=a++
=a+c+=a+c+b.
(2)因为M是AA1的中点,所以=+
=+
=-a+=a+b+c.
又=+=+
=+=c+a,
所以+=+
=a+b+c.
规律方法 (1)选定空间不共面的三个向量作基向量,这是用向量解决立体几何问题的基本要求.用已知基向量表示指定向量时,应结合已知和所求向量观察图形,将已知向量和未知向量转化至三角形或平行四边形中,然后利用三角形法则或平行四边形法则进行运算.
(2)首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量,我们把这个法则称为向量加法的多边形法则.
提醒 空间向量的线性运算类似于平面向量中的线性运算.
【训练1】 如图,三棱锥O-ABC中,M,N分别是AB,OC的中点,设=a,=b,=c,用a,b,c表示,则=( )
A.(-a+b+c) B.(a+b-c)
C.(a-b+c) D.(-a-b+c)
解析 =+=(-)+
=-+(-)=+-
=(a+b-c).
答案 B
考点二 共线定理、共面定理的应用
【例2】 已知A,B,C三点不共线,对平面ABC外的任一点O,若点M满足=(++).
(1)判断,,三个向量是否共面;
(2)判断点M是否在平面ABC内.
解 (1)由题意知++=3,
所以-=(-)+(-),
即=+=--,
所以,,共面.
(2)由(1)知,,共面且过同一点M,
所以M,A,B,C四点共面.
从而点M在平面ABC内.
规律方法 (1)证明空间三点P,A,B共线的方法
①=λ(λ∈R);
②对空间任一点O,=x+y(x+y=1).
(2)证明空间四点P,M,A,B共面的方法
①=x+y;
②对空间任一点O,=x+y+z(x+y+z=1);
③∥(或∥或∥).
(3)三点共线通常转化为向量共线,四点共面通常转化为向量共面,线面平行可转化为向量共线、共面来证明.
【训练2】 (1)若A(-1,2,3),B(2,1,4),C(m,n,1)三点共线,则m+n=________.
(2)已知空间四点A(-2,0,2),B(-1,1,2),C(-3,0,4),D(1,2,t),若四点共面,则t的值为________.
解析 (1)=(3,-1,1),=(m+1,n-2,-2).
∵A,B,C三点共线,∴∥,
∴==,
∴m=-7,n=4,∴m+n=-3.
(2)=(1,1,0),=(-1,0,2),=(3,2,t-2),
∵A,B,C,D四点共面,∴,,共面.
设=x+y,
即(3,2,t-2)=(x-y,x,2y),
则解得∴t的值为0.
答案 (1)-3 (2)0
考点三 空间向量数量积及其应用
【例3】 如图,在平行六面体ABCD-A1B1C1D1中,以顶点A为端点的三条棱长度都为1,且两两夹角为60°.
(1)求AC1的长;
(2)求与夹角的余弦值.
解 (1)记=a,=b,=c,
则|a|=|b|=|c|=1,〈a,b〉=〈b,c〉=〈c,a〉=60°,
所以a·b=b·c=c·a=.
||2=(a+b+c)2
=a2+b2+c2+2(a·b+b·c+c·a)
=1+1+1+2×
=6,
所以||=,即AC1的长为.
(2)=b+c-a,=a+b,
所以||=,||=,
·=(b+c-a)·(a+b)
=b2-a2+a·c+b·c=1,
所以cos〈,〉==.
即与夹角的余弦值为.
规律方法 利用数量积解决问题的两条途径:一是根据数量积的定义,利用模与夹角直接计算;二是利用坐标运算.可解决有关垂直、夹角、长度问题.
(1)a≠0,b≠0,a⊥b⇔a·b=0;
(2)|a|=;
(3)cos〈a,b〉=.
【训练3】 正方体ABCD-A1B1C1D1的棱长为2,MN是其内切球O的一条直径,E是正方体表面上一点,求·的最大值.
解 由极化恒等式的三角形形式得
·=[(2)2-2].
又因为MN是其内切球O的一条直径,E是正方体表面上的动点,所以||=2,||≤,所以·=[(2)2-4]≤2,
所以·的最大值为2.
基础巩固题组
一、选择题
1.已知向量a=(2m+1,3,m-1),b=(2,m,-m),且a∥b,则实数m的值等于( )
A. B.-2
C.0 D.或-2
解析 ∵a∥b,∴==,解得m=-2.
答案 B
2.在正方体ABCD-A1B1C1D1中,M,N分别为棱AA1和BB1的中点,则sin〈,〉的值为( )
A. B.
C. D.
解析 如图,设正方体棱长为2,则易得=(2,-2,1),=(2,2,-1),∴cos〈,〉
==-,又〈,〉∈[0,π],
∴sin〈,〉==.
答案 B
3.已知向量a=(1,1,0),b=(-1,0,2),且ka+b与2a-b互相垂直,则k的值是( )
A.-1 B.
C. D.
解析 由题意得ka+b=(k-1,k,2),2a-b=(3,2,-2).所以(ka+b)·(2a-b)=3(k-1)+2k-2×2=5k-7=0,解得k=.
答案 D
4.已知空间四边形ABCD的各边和对角线均相等,E是BC的中点,那么( )
A.·<·
B.·=·
C.·>·
D.·与·的大小不能比较
解析 取BD的中点F,连接EF,则EF綉CD,因为〈,〉=〈,〉>90°,因为·=0,∴·<0,所以·>·.
答案 C
5.已知空间四边形ABCD的每条边和对角线的长都等于a,点E,F分别是BC,AD的中点,则·的值为( )
A.a2 B.a2
C.a2 D.a2
解析 如图,设=a,=b,=c,
则|a|=|b|=|c|=a,且a,b,c三向量两两夹角为60°.
=(a+b),=c,
∴·=(a+b)·c
=(a·c+b·c)
=(a2cos 60°+a2cos 60°)=a2.
答案 C
6.如图所示,在平行六面体ABCDA1B1C1D1中,点M,P,Q分别为棱AB,CD,BC的中点,若平行六面体的各棱长均相等,则:
①A1M∥D1P;
②A1M∥B1Q;
③A1M∥平面DCC1D1;
④A1M∥平面D1PQB1.
以上说法正确的个数为( )
A.1 B.2
C.3 D.4
解析 =+=+,=+=+,∴∥,所以A1M∥D1P,又D1P⊂平面DCC1D1,D1P⊂平面D1PQB1,A1M⊄平面DCC1D1,A1M⊄平面D1PQB1,由线面平行的判定定理可知,A1M∥平面DCC1D1,A1M∥平面D1PQB1.①③④正确.
答案 C
二、填空题
7.已知2a+b=(0,-5,10),c=(1,-2,-2),a·c=4,|b|=12,则b,c的夹角为________.
解析 由题意得(2a+b)·c=0+10-20=-10.
即2a·c+b·c=-10,又∵a·c=4,∴b·c=-18,
∴cos〈b,c〉===-,
0°≤〈b,c〉≤180°,
∴〈b,c〉=120°.
答案 120°
8.已知a=(-2,1,3),b=(-1,2,1),a与b夹角的余弦值为________;若a⊥(a-λb),则λ=________.
解析 ∵a=(-2,1,3),b=(-1,2,1),∴cos〈a,b〉===;由题意a·(a-λb)=0,即a2-λa·b=0,又a2=14,a·b=7,∴14-7λ=0,∴λ=2.
答案 2
9.已知=(1,5,-2),=(3,1,z),若⊥,=(x-1,y,-3),且BP⊥平面ABC,则x=________,y=________,z=________.
解析 由条件得
解得x=,y=-,z=4.
答案 - 4
10.设A1,A2,A3,A4,A5是空间中给定的5个不同的点,则使=0成立的点M的个数有________.
解析 设M(a,b,c),Ak(xk,yk,zk)(k=1,2,3,4,5).
则=(xk-a,yk-b,zk-c),
∴由=0得
∴∴存在唯一点M.
答案 1
三、解答题
11.如图,已知平行六面体ABCD-A′B′C′D′.试用′表示+′+′.
解 ∵平行六面体的六个面均为平行四边形,
∴在▱ABCD中,=+,
在▱ABB′A′中,′=+′,
在▱ADD′A′中,′=+′,
∴+′+′=(+)+(+′)+(+′)=2(++).
又∵在▱ABCD中,=,
在▱ACC′A′中,′=′,
∴++′=++′=′,
∴+′+′=2′.
12.已知空间中三点A(-2,0,2),B(-1,1,2),C(-3,0,4),设a=,b=.
(1)若|c|=3,且c∥,求向量c.
(2)求向量a与向量b的夹角的余弦值.
解 (1)∵c∥,=(-3,0,4)-(-1,1,2)=(-2,-1,2),
∴c=m=m(-2,-1,2)=(-2m,-m,2m),
∴|c|==3|m|=3,
∴m=±1.∴c=(-2,-1,2)或(2,1,-2).
(2)∵a=(1,1,0),b=(-1,0,2),
∴a·b=(1,1,0)·(-1,0,2)=-1,
又∵|a|==,
|b|==,
∴cos〈a,b〉===-,
即向量a与向量b的夹角的余弦值为-.
能力提升题组
13.在空间四边形ABCD中,·+·+·=( )
A.-1 B.0
C.1 D.不确定
解析 如图,令=a,=b,=c,则·+·+·
=a·(c-b)+b·(a-c)+c·(b-a)
=a·c-a·b+b·a-b·c+c·b-c·a=0.
答案 B
14.若{a,b,c}是空间的一个基底,且向量p=xa+yb+zc,则(x,y,z)叫向量p在基底{a,b,c}下的坐标.
已知{a,b,c}是空间的一个基底,{a+b,a-b,c}是空间的另一个基底,一向量p在基底{a,b,c}下的坐标为(4,2,3),则向量p在基底{a+b,a-b,c}下的坐标是( )
A.(4,0,3) B.(3,1,3)
C.(1,2,3) D.(2,1,3)
解析 设p在基底{a+b,a-b,c}下的坐标为(x,y,z).则
p=x(a+b)+y(a-b)+zc=(x+y)a+(x-y)b+zc,①
因为p在{a,b,c}下的坐标为(4,2,3),
∴p=4a+2b+3c,②
由①②得∴
即p在{a+b,a-b,c}下的坐标为(3,1,3).
答案 B
15.已知O点为空间直角坐标系的原点,向量=(1,2,3),=(2,1,2),=(1,1,2),且点Q在直线OP上运动,当·取得最小值时,的坐标是__________.
解析 ∵点Q在直线OP上,∴设点Q(λ,λ,2λ),
则=(1-λ,2-λ,3-2λ),=(2-λ,1-λ,2-2λ),
·=(1-λ)(2-λ)+(2-λ)(1-λ)+(3-2λ)(2-2λ)=6λ2-16λ+10=6-.
即当λ=时,·取得最小值-.
此时=.
答案
16.已知空间向量,,的模长分别为1,2,3,且两两夹角均为60°.点G为△ABC的重心,若=x+y+z,x,y,z∈R,则x+y+z=________.||=________.
解析 因为A,B,C,G四点共面,所以x+y+z=1,则z=1-x-y,=+=+(+)=+[(-)+(-)]=++PC=(++),∴x=y=z=,||=
=×
=.
答案 1
17.如图,在棱长为a的正方体OABC-O1A1B1C1中,E,F分别是棱AB,BC上的动点,且AE=BF=x,其中0≤x≤a,以O为原点建立空间直角坐标系O-xyz.
(1)写出点E,F的坐标;
(2)求证:⊥;
(3)若A1,E,F,C1四点共面,求证:=+.
(1)解 E(a,x,0),F(a-x,a,0).
(2)证明 ∵A1(a,0,a),C1(0,a,a),
∴=(-x,a,-a),=(a,x-a,-a),
∴·=-ax+a(x-a)+a2=0,
∴⊥.
(3)证明 ∵A1,E,F,C1四点共面,
∴,,共面.
选与为在平面A1C1E上的一组基向量,则存在唯一实数对(λ1,λ2),使=λ1+λ2,
即(-x,a,-a)=λ1(-a,a,0)+λ2(0,x,-a)
=(-aλ1,aλ1+xλ2,-aλ2),
∴
解得λ1=,λ2=1.
于是=+.
18.如图所示,已知空间四边形ABCD的每条边和对角线长都等于1,点E,F,G分别是AB,AD,CD的中点,计算:
(1)·;(2)的长;
(3)与所成角的余弦值.
解 设=a,=b,=c.
则|a|=|b|=|c|=1,〈a,b〉=〈b,c〉=〈c,a〉=60°,
(1)==c-a,=-a,
·=·(-a)=a2-a·c=,
(2)=++=a+b-a+c-b
=-a+b+c,
||2=a2+b2+c2-a·b+b·c-c·a=,则||=.
(3)=b+c,=+=-b+a,
cos〈,〉==-.
相关资料
更多