![2021高三统考北师大版数学一轮学案:第9章第2讲 两直线的位置关系第1页](http://img-preview.51jiaoxi.com/3/3/5750198/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021高三统考北师大版数学一轮学案:第9章第2讲 两直线的位置关系第2页](http://img-preview.51jiaoxi.com/3/3/5750198/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021高三统考北师大版数学一轮学案:第9章第2讲 两直线的位置关系第3页](http://img-preview.51jiaoxi.com/3/3/5750198/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:2021高考北师大版数学一轮学案
2021高三统考北师大版数学一轮学案:第9章第2讲 两直线的位置关系
展开
第2讲 两直线的位置关系
基础知识整合
1.两条直线的位置关系
(1)两条直线平行与垂直
①两条直线平行
(ⅰ)对于两条不重合的直线l1,l2,若其斜率分别为k1,k2,则有l1∥l2⇔k1=k2.
(ⅱ)当直线l1,l2不重合且斜率都不存在时,l1∥l2.
②两条直线垂直
(ⅰ)如果两条直线l1,l2的斜率存在,设为k1,k2,则有l1⊥l2⇔k1k2=-1.
(ⅱ)当其中一条直线的斜率不存在,而另一条的斜率为0时,l1⊥l2.
(2)两条直线的交点
直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,则l1与l2的交点坐标就是方程组的解.
2.几种距离
(1)两点P1(x1,y1),P2(x2,y2)之间的距离|P1P2|=.
(2)点P0(x0,y0)到直线l:Ax+By+C=0的距离d=.
(3)两条平行线Ax+By+C1=0与Ax+By+C2=0(其中C1≠C2)间的距离d=.
1.三种常见的直线系方程
(1)平行于直线Ax+By+C=0的直线系方程:Ax+By+C0=0(C≠C0);
(2)垂直于直线Ax+By+C=0的直线系方程:Bx-Ay+C0=0;
(3)过两条已知直线l1:A1x+B1y+C1=0和l2:A2x+B2y+C2=0的交点的直线系方程:A1x+B1y+C1+λ(A2x+B2y+C2)=0(λ∈R,这个直线系不包括直线l2:A2x+B2y+C2=0,解题时,注意检验l2是否满足题意,以防漏解).
2.四种常见的对称
(1)点(x,y)关于直线y=x的对称点为(y,x),关于直线y=-x的对称点为(-y,-x).
(2)点(x,y)关于直线x=a的对称点为(2a-x,y),关于直线y=b的对称点为(x,2b-y).
(3)点(x,y)关于点(a,b)的对称点为(2a-x,2b-y).
(4)点(x,y)关于直线x+y=k的对称点为(k-y,k-x),关于直线x-y=k的对称点为(k+y,x-k).
3.点到直线、两平行线间的距离公式的使用条件
(1)求点到直线的距离时,应先化直线方程为一般式.
(2)求两平行线之间的距离时,应先将方程化为一般式且x,y的系数对应相等.
1.(2019·广东惠阳模拟)点A(2,5)到直线l:x-2y+3=0的距离为( )
A.2 B.
C. D.
答案 C
解析 点A(2,5)到直线l:x-2y+3=0的距离为d==.故选C.
2.过点(1,0)且与直线x-2y-2=0平行的直线方程是( )
A.x-2y-1=0 B.x-2y+1=0
C.2x+y-2=0 D.x+2y-1=0
答案 A
解析 因为所求直线与直线x-2y-2=0平行,所以设直线方程为x-2y+c=0,又直线经过点(1,0),得出c=-1,故所求直线方程为x-2y-1=0.
3.设a∈R,则“a=1”是“直线l1:ax+2y-1=0与直线l2:x+(a+1)y+4=0平行”的( )
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分也不必要条件
答案 A
解析 若两直线平行,则a(a+1)=2,即a2+a-2=0,解得a=1或-2,故a=1是两直线平行的充分不必要条件.
4.若直线mx+4y-2=0与直线2x-5y+n=0垂直,垂足为(1,p),则实数n的值为( )
A.-12 B.-2
C.0 D.10
答案 A
解析 由2m-20=0,得m=10.由垂足(1,p)在直线mx+4y-2=0上,得10+4p-2=0.解得p=-2.又因为垂足(1,-2)在直线2x-5y+n=0上,解得n=-12.
5.(2019·重庆模拟)光线从点A(-3,5)射到x轴上,经x轴反射后经过点B(2,10),则光线从A到B的距离为( )
A.5 B.2
C.5 D.10
答案 C
解析 点B(2,10)关于x轴的对称点为B′(2,-10),由对称性可得光线从A到B的距离为|AB′|==5.故选C.
6.(2019·云南师大附中适应性月考)已知倾斜角为α的直线l与直线m:x-2y+3=0垂直,则cos2α=________.
答案 -
解析 直线m:x-2y+3=0的斜率是,∵l⊥m,∴直线l的斜率是-2,故tanα=-2,∴
![英语朗读宝](http://img.51jiaoxi.com/images/ed4b79351ae3a39596034d4bbb94b742.jpg)