


所属成套资源:2021高考数学理科人教A版一轮复习学案作业
2021高考数学(理)人教A版一轮复习学案作业:第二章2.9函数模型及其应用
展开
§2.9 函数模型及其应用
最新考纲
考情考向分析
1.了解指数函数、对数函数、幂函数的增长特征,结合具体实例体会直线上升、指数增长、对数增长等不同函数类型增长的含义.
2.了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.
考查根据实际问题建立函数模型解决问题的能力,常与函数图象、单调性、最值及方程、不等式交汇命题,题型以选择、填空题为主,中档难度.
1.几类函数模型
函数模型
函数解析式
一次函数模型
f (x)=ax+b(a,b为常数,a≠0)
反比例函数模型
f (x)=+b(k,b为常数且k≠0)
二次函数模型
f (x)=ax2+bx+c(a,b,c为常数,a≠0)
指数函数模型
f (x)=bax+c(a,b,c为常数,b≠0,a>0且a≠1)
对数函数模型
f (x)=blogax+c(a,b,c为常数,b≠0,a>0且a≠1)
幂函数模型
f (x)=axn+b (a,b为常数,a≠0)
2.三种函数模型的性质
函数
性质
y=ax(a>1)
y=logax(a>1)
y=xn(n>0)
在(0,+∞)上的增减性
单调递增
单调递增
单调递增
增长速度
越来越快
越来越慢
相对平稳
图象的变化
随x的增大逐渐表现为与y轴平行
随x的增大逐渐表现为与x轴平行
随n值变化而各有不同
值的比较
存在一个x0,当x>x0时,有logax0.1).
②由t-0.1≤0.25=,得t≥0.6.
故至少需经过0.6小时学生才能回到教室.
思维升华 求解所给函数模型解决实际问题的关键点
(1)认清所给函数模型,弄清哪些量为待定系数.
(2)根据已知利用待定系数法,确定模型中的待定系数.
(3)利用该模型求解实际问题.
跟踪训练 (1)拟定甲、乙两地通话m分钟的电话费(单位:元)由f (m)=1.06(0.5[m]+1)给出,其中m>0,[m]是不超过m的最大整数(如[3]=3,[3.7]=3,[3.1]=3),则甲、乙两地通话6.5分钟的电话费为______元.
答案 4.24
解析 ∵m=6.5,∴[m]=6,
则f (6.5)=1.06×(0.5×6+1)=4.24.
(2)某地西红柿上市后,通过市场调查,得到西红柿种植成本Q(单位:元/100 kg)与上市时间t(单位:天)的数据如下表:
时间t
60
100
180
种植成本Q
116
84
116
根据上表数据,从下列函数中选取一个函数描述西红柿种植成本Q与上市时间t的变化关系:
Q=at+b,Q=at2+bt+c,Q=a·bt,Q=a·logbt.
利用你选取的函数,求:
①西红柿种植成本最低时的上市天数是________;
②最低种植成本是________元/100 kg.
答案 ①120 ②80
解析 因为随着时间的增加,种植成本先减少后增加,而且当t=60和t=180时种植成本相等,再结合题中给出的四种函数关系可知,种植成本与上市时间的变化关系应该用二次函数Q=at2+bt+c,即Q=a(t-120)2+m描述,将表中数据代入可得
解得
所以Q=0.01(t-120)2+80,故当上市天数为120时,种植成本取到最低值80元/100 kg.
命题点1 构造二次函数模型
例1 某城市对一种售价为每件160元的商品征收附加税,税率为R%(即每销售100元征税R元),若每年销售量为万件,要使附加税不少于128万元,则R的取值范围是( )
A.[4,8] B.[6,10]
C.[4%,8%] D.[6%,10%]
答案 A
解析 根据题意,要使附加税不少于128万元,需×160×R%≥128,
整理得R2-12R+32≤0,解得4≤R≤8,
即R∈[4,8].
命题点2 构造指数函数、对数函数模型
例2 一片森林原来面积为a,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的,已知到今年为止,森林剩余面积为原来的.
(1)求每年砍伐面积的百分比;
(2)到今年为止,该森林已砍伐了多少年?
解 (1)设每年砍伐面积的百分比为x(0
