2021版新高考数学(文科)一轮复习教师用书:第2章第10节 函数模型及其应用
展开第十节 函数模型及其应用
[最新考纲] 1.了解指数函数、对数函数、幂函数的增长特征,结合具体实例体会直线上升、指数增长、对数增长等不同函数类型增长的含义.2.了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.
1.常见的几种函数模型
(1)一次函数模型:y=kx+b(k≠0).
(2)反比例函数模型:y=+b(k,b为常数且k≠0).
(3)二次函数模型:y=ax2+bx+c(a,b,c为常数,a≠0).
(4)指数函数模型:y=a·bx+c(a,b,c为常数,b>0,b≠1,a≠0).
(5)对数函数模型:y=mlogax+n(m,n,a为常数,a>0,a≠1,m≠0).
(6)幂函数模型:y=a·xn+b(a≠0).
2.三种函数模型之间增长速度的比较
函数 性质 | y=ax(a>1) | y=logax(a>1) | y=xn(n>0) |
在(0,+∞) 上的增减性 | 单调递增 | 单调递增 | 单调递增 |
增长速度 | 越来越快 | 越来越慢 | 因n而异 |
图象的变化 | 随x的增大逐渐表现为与y轴平行 | 随x的增大逐渐表现为与x轴平行 | 随n值变化而各有不同 |
值的比较 | 存在一个x0,当x>x0时,有logax<xn<ax |
3.解函数应用问题的步骤(四步八字)
(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型;
(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;
(3)解模:求解数学模型,得出数学结论;
(4)还原:将数学问题还原为实际问题.
形如f(x)=x+(a>0)的函数模型称为“对勾”函数模型:
(1)该函数在(-∞,-]和[,+∞)内单调递增,在[-,0)和(0,]上单调递减.
(2)当x>0时,x=时取最小值2,
当x<0时,x=-时取最大值-2.
一、思考辨析(正确的打“√”,错误的打“×”)
(1)函数y=2x与函数y=x2的图象有且只有两个公共点.( )
(2)幂函数增长比直线增长更快. ( )
(3)不存在x0,使ax0<x<logax0. ( )
(4)f(x)=x2,g(x)=2x,h(x)=log2x,当x∈(4,+∞)时,恒有h(x)<f(x)<g(x). ( )
[答案] (1)× (2)× (3)× (4)√
二、教材改编
1.某工厂一年中各月份的收入、支出情况的统计图如图所示,则下列说法中错误的是( )
(注:结余=收入-支出)
A.收入最高值与收入最低值的比是3∶1
B.结余最高的月份是7月
C.1至2月份的收入的变化率与4至5月份的收入的变化率相同
D.前6个月的平均收入为40万元
D [由题图可知,收入最高值为90万元,收入最低值为30万元,其比是3∶1,故A正确;由题图可知,7月份的结余最高,为80-20=60(万元),故B正确;由题图可知,1至2月份的收入的变化率与4至5月份的收入的变化率相同,故C正确;由题图可知,前6个月的平均收入为×(40+60+30+30+50+60)=45(万元),故D错误.]
2.在某个物理实验中,测量得变量x和变量y的几组数据如下表:
x | 0.50 | 0.99 | 2.01 | 3.98 |
y | -0.99 | 0.01 | 0.98 | 2.00 |
则对x,y最适合的拟合函数是( )
A.y=2x B.y=x2-1
C.y=2x-2 D.y=log2 x
D [根据x=0.50,y=-0.99,代入计算,可以排除A;根据x=2.01,y=0.98,代入计算,可以排除B,C;将各数据代入函数y=log2x,可知满足题意,故选D.]
3.生产一定数量的商品的全部费用称为生产成本,某企业一个月生产某种商品x万件时的生产成本为C(x)=x2+2x+20(万元).一万件售价为20万元,为获取更大利润,该企业一个月应生产该商品数量为 万件.
18 [利润L(x)=20x-C(x)=-(x-18)2+142,当x=18时,L(x)有最大值.]
4.用长度为24的材料围一矩形场地,中间加两道隔墙,要使矩形的面积最大,则隔墙的长度为 .
3 [设隔墙的长度为x(0<x<6),矩形面积为y,则y=x×=2x(6-x)=-2(x-3)2+18,
∴当x=3时,y最大.]
考点1 用函数图象刻画变化过程
判断函数图象与实际问题中两变量变化过程相吻合的两种方法
(1)构建函数模型法:当根据题意易构建函数模型时,先建立函数模型,再结合模型选图象.
(2)验证法:当根据题意不易建立函数模型时,则根据实际问题中两变量的变化特点,结合图象的变化趋势,验证是否吻合,从中排除不符合实际的情况,选择出符合实际情况的答案.
1.(2019·遵义模拟)如图,有一直角墙角,两边的长度足够长,若P处有一棵树与两墙的距离分别是4 m和a m(0<a<12).不考虑树的粗细,现用16 m长的篱笆,借助墙角围成一个矩形花圃ABCD,设此矩形花圃的最大面积为u,若将这棵树围在矩形花圃内,则函数u=f(a)(单位:m2)的图象大致是( )
A B C D
B [设AD的长为x m,则CD的长为(16-x)m,则矩形ABCD的面积为x(16-x)m2.因为要将点P围在矩形ABCD内,所以a≤x≤12.当0<a≤8时,当且仅当x=8时,u=64;当8<a<12时,u=a(16-a).画出函数图象可得其形状与B选项接近,故选B.]
2.有一个盛水的容器,由悬在它的上空的一条水管均匀地注水,最后把容器注满,在注水过程中时间t与水面高度y之间的关系如图所示.若图中PQ为一线段,则与之对应的容器的形状是( )
A B C D
B [由函数图象可判断出该容器必定有不同规则的形状,且函数图象的变化先慢后快,所以容器下边粗,上边细.再由PQ为线段,知这一段是均匀变化的,所以容器上端必是直的一段,故排除A,C,D,选B.]
3.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是( )
A.消耗1升汽油,乙车最多可行驶5千米
B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多
C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油
D.某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比用乙车更省油
D [根据图象知消耗1升汽油,乙车最多行驶里程大于5千米,故选项A错;以相同速度行驶时,甲车燃油效率最高,因此以相同速度行驶相同路程时,甲车消耗汽油最少,故选项B错;甲车以80千米/小时的速度行驶时燃油效率为10千米/升,行驶1小时,里程为80千米,消耗8升汽油,故选项C错;最高限速80千米/小时,丙车的燃油效率比乙车高,因此相同条件下,在该市用丙车比用乙车更省油,故选项D对.]
准确掌握常见函数模型图象的变化趋势是解决此类问题的关键.
考点2 应用所给函数模型解决实际问题
求解所给函数模型解决实际问题的三个关注点
(1)认清所给函数模型,弄清哪些量为待定系数.
(2)根据已知利用待定系数法,确定模型中的待定系数.
(3)利用该模型求解实际问题.
小王大学毕业后,决定利用所学专业进行自主创业.经过市场调查,生产某小型电子产品需投入年固定成本为3万元,每生产x万件,需另投入流动成本为W(x)万元,在年产量不足8万件时,W(x)=x2+x(万元).在年产量不小于8万件时,W(x)=6x+-38(万元).每件产品售价为5元.通过市场分析,小王生产的商品能当年全部售完.
(1)写出年利润L(x)(万元)关于年产量x(万件)的函数解析式;(注:年利润=年销售收入-固定成本-流动成本)
(2)年产量为多少万件时,小王在这一商品的生产中所获利润最大?最大利润是多少?
[解] (1)因为每件商品售价为5元,则x万件商品销售收入为5x万元,
依题意得,当0<x<8时,
L(x)=5x--3=-x2+4x-3;
当x≥8时,L(x)=5x--3=35-.
所以L(x)=
(2)当0<x<8时,L(x)=-(x-6)2+9.
此时,当x=6时,
L(x)取得最大值L(6)=9万元,
当x≥8时,L(x)=35-≤35-2=35-20=15,此时,当且仅当x=,即x=10时,L(x)取得最大值15万元.
因为9<15,所以当年产量为10万件时,小王在这一商品的生产中所获利润最大,最大利润为15万元.
解决实际问题时,应注意自变量的取值范围,如本例中x∈(0,+∞).
一个容器装有细沙a cm3,细沙从容器底部一个细微的小孔慢慢地匀速漏出,t min后剩余的细沙量为y=ae-bt(cm3),经过8 min后发现容器内还有一半的沙子,则再经过 min,容器中的沙子只有开始时的八分之一.
16 [当t=0时,y=a,当t=8时,y=ae-8b=a,
∴e-8b=,容器中的沙子只有开始时的八分之一时,即y=ae-b t=a,e-b t==(e-8 b)3=e-24b,则t=24,所以再经过16 min.]
考点3 构建函数模型解决实际问题
构建函数模型解决实际问题的步骤
构造二次函数、分段函数模型
国庆期间,某旅行社组团去风景区旅游,若每团人数在30或30以下,飞机票每张收费900元;若每团人数多于30,则给予优惠:每多1人,机票每张减少10元,直到达到规定人数75为止.每团乘飞机,旅行社需付给航空公司包机费15 000元.
(1)写出飞机票的价格关于人数的函数;
(2)每团人数为多少时,旅行社可获得最大利润?
[解] (1)设每团人数为x,由题意得0<x≤75(x∈N*),飞机票价格为y元,
则y=
即y=
(2)设旅行社获利S元,
则S=
即S=
因为S=900x-15 000在区间(0,30]上为增函数,故当x=30时,S取最大值12 000.
又S=-10(x-60)2+21 000,x∈(30,75],所以当x=60时,S取得最大值21 000.
故当x=60时,旅行社可获得最大利润.
解题过程——谨防两种失误
(1)二次函数的最值一般利用配方法与函数的单调性等解决,但一定要密切注意函数的定义域,否则极易出错.
(2)求分段函数的最值时,应先求出每一段上的最值,然后比较大小得解.
构造y=x+(a>0)模型
某养殖场需定期购买饲料,已知该养殖场每天需要饲料200千克,每千克饲料的价格为1.8元,饲料的保管费与其他费用平均每千克每天0.03元,购买饲料每次支付运费300元.求该养殖场多少天购买一次饲料才能使平均每天支付的总费用最少.
[解] 设该养殖场x(x∈N*)天购买一次饲料,平均每天支付的总费用为y元.
因为饲料的保管费与其他费用每天比前一天少200×0.03=6(元),所以x天饲料的保管费与其他费用共是6(x-1)+6(x-2)+…+6=(3x2-3x)(元).
从而有y=(3x2-3x+300)+200×1.8=+3x+357≥2+357=417,
当且仅当=3x,即x=10时,y有最小值.故该养殖场10天购买一次饲料才能使平均每天支付的总费用最少.
利用模型f(x)=ax+求解最值时,要注意自变量的取值范围及取得最值时等号成立的条件.
构建指数函数、对数函数模型
(1)世界人口在过去40年翻了一番,则每年人口平均增长率约是(参考数据lg 2≈0.301 0,100.007 5≈1.017)( )
A.1.5% B.1.6%
C.1.7% D.1.8%
(2)十三届全国人大一次会议《政府工作报告》指出:过去五年来,我国经济实力跃上新台阶.国内生产总值从54万亿元增加到82.7万亿元,年均增长7.1%,占世界经济比重从11.4%提高到15%左右,对世界经济增长贡献率超过30%,2018年发展的预期目标是国内生产总值增长6.5%左右.如果从2018年开始,以后每年的国内生产总值都按6.5%的增长率增长,那么2020年的国内生产总值约为(提示:1.0653≈1.208)( )
A.93.8万亿元 B.99.9万亿元
C.97万亿元 D.106.39万亿元
(1)C (2)B [(1)设每年人口平均增长率为x,则(1+x)40=2,两边取以10为底的对数,则40lg(1+x)=lg 2,所以lg(1+x)=≈0.007 5,所以100.007 5=1+x,得1+x≈1.017,所以x≈1.7%.故选C.
(2)由题意可知,2020年我国国内年生产总值约为:82.7×(1+6.5%)3≈99.9(万亿元).故选B.]
(1)与指数函数、对数函数模型有关的实际问题,在求解时,要先学会合理选择模型,指数函数模型(底数大于1)是增长速度越来越快的一类函数模型,与增长率、银行利率有关的问题都属于指数函数模型.
(2)在解决指数函数、对数函数模型问题时,一般先需要通过待定系数法确定函数解析式,再借助函数的图象求解最值问题,必要时可借助导数.
1.某化工厂生产一种溶液,按市场要求杂质含量不超过0.1%,若初时含杂质2%,每过滤一次可使杂质含量减少,至少应过滤 次才能达到市场要求.(已知lg 2≈0.301 0,lg 3≈0.477 1)
8 [设至少过滤n次才能达到市场要求,
则2%≤0.1%,即≤,
所以nlg ≤-1-lg 2,所以n≥7.39,所以n=8.]
2.某景区提供自行车出租,该景区有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超出6元,则每超过1元,租不出的自行车就增加3辆.为了便于结算,每辆自行车的日租金x(元)只取整数,并且要求租自行车一日的总收入必须高于这一日的管理费用,用y(元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后得到的部分).
(1)求函数y=f(x)的解析式;
(2)试问当每辆自行车的日租金为多少元时,才能使一日的净收入最多?
[解] (1)当x≤6时,y=50x-115,
令50x-115>0,解得x>2.3,
∵x为整数,∴3≤x≤6,x∈Z.
当x>6时,y=[50-3(x-6)]x-115=-3x2+68x-115.
令-3x2+68x-115>0,有3x2-68x+115<0,结合x为整数得6<x≤20,x∈Z.
∴y=
(2)对于y=50x-115(3≤x≤6,x∈Z),
显然当x=6时,ymax=185;
对于y=-3x2+68x-115=-32+(6<x≤20,x∈Z),当x=11时,ymax=270.
∵270>185,∴当每辆自行车的日租金定为11元时,才能使一日的净收入最多.