|学案下载
终身会员
搜索
    上传资料 赚现金
    2021版江苏高考数学一轮复习讲义:第8章第10节 圆锥曲线中的证明、探索性问题
    立即下载
    加入资料篮
    2021版江苏高考数学一轮复习讲义:第8章第10节 圆锥曲线中的证明、探索性问题01
    2021版江苏高考数学一轮复习讲义:第8章第10节 圆锥曲线中的证明、探索性问题02
    2021版江苏高考数学一轮复习讲义:第8章第10节 圆锥曲线中的证明、探索性问题03
    还剩9页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021版江苏高考数学一轮复习讲义:第8章第10节 圆锥曲线中的证明、探索性问题

    展开

    第十节 圆锥曲线中的证明、探索性问题

    考点1 圆锥曲线中的几何证明问题

     圆锥曲线中常见的证明问题

    (1)位置关系方面的:如证明直线与曲线相切,直线间的平行、垂直,直线过定点等.

    (2)数量关系方面的:如存在定值、恒成立、相等等.

    在熟悉圆锥曲线的定义与性质的前提下,一般采用直接法,通过相关的代数运算证明,但有时也会用反证法证明.

      (2018·全国卷)设椭圆Cy21的右焦点为F,过F的直线lC交于AB两点,点M的坐标为(2,0)

    (1)lx轴垂直时,求直线AM的方程;

    (2)O为坐标原点,证明:OMAOMB.

    [](1)由已知得F(1,0)l的方程为x1.

    由已知可得,点A的坐标为.

    M(2,0),所以AM的方程为y=-xyx.

    (2)证明:lx轴重合时,OMAOMB0°.

    lx轴垂直时,OMAB的垂直平分线,所以OMAOMB.

    lx轴不重合也不垂直时,设l的方程为yk(x1)(k0)A(x1y1)B(x2y2)

    x1x2,直线MAMB的斜率之和为kMAkMB.

    y1kx1ky2kx2k

    kMAkMB.

    yk(x1)代入y21

    (2k21)x24k2x2k220.

    所以,x1x2x1x2.

    2kx1x23k(x1x2)4k0.

    从而kMAkMB0,故MAMB的倾斜角互补.所以OMAOMB.综上,OMAOMB.

      解决本题的关键是把图形中角相等关系转化为相关直线的斜率之和为零;类似的还有圆过定点问题,转化为在该点的圆周角为直角,进而转化为斜率之积为-1;线段长度的比问题转化为线段端点的纵坐标或横坐标之比.

    [教师备选例题]

    (2017·全国卷)已知抛物线Cy22x,过点(2,0)的直线lCAB两点,圆M是以线段AB为直径的圆.

    (1)证明:坐标原点O在圆M上;

    (2)设圆M过点P(4,-2),求直线l与圆M的方程.

    [](1)证明:A(x1y1)B(x2y2)lxmy2.

    可得y22my40,则y1y2=-4.

    x1x2,故x1x24.

    因此OA的斜率与OB的斜率之积为·=-1所以OAOB.

    故坐标原点O在圆M上.

    (2)(1)可得y1y22m

    x1x2m(y1y2)42m24

    故圆心M的坐标为(m22m)

    M的半径r.

    由于圆M过点P(4,-2)

    因此·0

    (x14)(x24)(y12)(y22)0

    x1x24(x1x2)y1y22(y1y2)200.

    (1)y1y2=-4x1x24.

    所以2m2m10解得m1m=-.

    m1时,直线l的方程为xy20,圆心M的坐标为(3,1),圆M的半径为

    M的方程为(x3)2(y1)210.

    m=-时,直线l的方程为2xy40,圆心M的坐标为,圆M的半径为

    M的方程为.

     1.已知动圆过定点A(4,0),且在y轴上截得的弦MN的长为8.

    (1)求动圆圆心的轨迹C的方程;

    (2)已知点B(1,0),设不垂直于x轴的直线l与轨迹C交于不同的两点PQ,若x轴是PBQ的角平分线,求证:直线l过定点.

    [](1)设动圆圆心为点P(xy),则由勾股定理得x242(x4)2y2,化简即得圆心的轨迹C的方程为y28x.

    (2)证明:法一:由题意可设直线l的方程为ykxb(k0)

    联立k2x22(kb4)xb20.

    Δ4(kb4)24k2b20,得kb2.

    设点P(x1y1)Q(x2y2)

    x1x2=-x1x2.

    因为x轴是PBQ的角平分线,所以kPBkQB0

    kPBkQB

    0

    所以kb0,即b=-k,所以l的方程为yk(x1)

    故直线l恒过定点(1,0)

    法二:设直线PB的方程为xmy1,它与抛物线C的另一个交点为Q,设点P(x1y1)Q(x2y2),由条件可得,QQ关于x轴对称,故Q(x2,-y2)

    联立消去xy28my80

    其中Δ64m2320y1y28my1y28.

    所以kPQ

    因而直线PQ的方程为yy1(xx1)

    y1y28y8x1

    PQ的方程化简得(y1y2)y8(x1)

    故直线l过定点(1,0)

    法三:由抛物线的对称性可知,如果定点存在,

    则它一定在x轴上,

    所以设定点坐标为(a,0),直线PQ的方程为xmya.

    联立消去x

    整理得y28my8a0Δ0.

    设点P(x1y1)Q(x2y2),则

    由条件可知kPBkQB0

    kPBkQB

    0

    所以-8ma8m0.

    m的任意性可知a1,所以直线l恒过定点(1,0)

    法四:PQ

    因为x轴是PBQ的角平分线,

    所以kPBkQB0

    整理得(y1y2)0.

    因为直线l不垂直于x轴,

    所以y1y20,可得y1y2=-8.

    因为kPQ

    所以直线PQ的方程为yy1

    y(x1).故直线l恒过定点(1,0)

    2(2019·贵阳模拟)已知椭圆1的右焦点为F,设直线lx5x轴的交点为E,过点F且斜率为k的直线l1与椭圆交于AB两点,M为线段EF的中点.

    (1)若直线l1的倾斜角为,求ABM的面积S的值;

    (2)过点B作直线BNl于点N,证明:AMN三点共线.

    [](1)由题意,知F(1,0)E(5,0)M(3,0).设A(x1y1)B(x2y2)

    直线l1的倾斜角为k1.

    直线l1的方程为yx1,即xy1.

    代入椭圆方程,可得9y28y160.

    y1y2=-y1y2=-.

    SABM·|FM|·|y1y2|

    .

    (2)证明:设直线l1的方程为yk(x1)

    代入椭圆方程,得(45k2)x210k2x5k2200

    x1x2x1x2.

    直线BNl于点NN(5y2)

    kAMkMN.

    y2(3x1)2(y1)k(x21)(3x1)2k(x11)=-k[x1x23(x1x2)5]=-k0

    kAMkMN.AMN三点共线.

    考点2 圆锥曲线中的探索性问题

     探索性问题的求解方法

      已知椭圆C9x2y2m2(m>0),直线l不过原点O且不平行于坐标轴,lC有两个交点AB,线段AB的中点为M.

    (1)证明:直线OM的斜率与l的斜率的乘积为定值;

    (2)l过点,延长线段OMC交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由.

    [](1)证明:设直线lykxb(k0b0)A(x1y1)B(x2y2)M(xMyM)

    ykxb代入9x2y2m2,得(k29)x22kbxb2m20

    xMyMkxMb.

    于是直线OM的斜率kOM=-,即kOM·k=-9.

    所以直线OM的斜率与l的斜率的乘积为定值.

    (2)四边形OAPB能为平行四边形.

    因为直线l过点,所以l不过原点且与C有两个交点的充要条件是k>0k3.

    (1)OM的方程为y=-x.

    设点P的横坐标为xP.

    x,即xP.

    将点的坐标代入直线l的方程得b

    因此xM.

    四边形OAPB为平行四边形,当且仅当线段AB与线段OP互相平分,即xP2xM.

    于是2×,解得k14k24.

    因为ki>0ki3i1,2,所以当直线l的斜率为44时,四边形OAPB为平行四边形.

     本例题干信息中涉及几何图形:平行四边形,把几何关系用数量关系等价转化是求解此类问题的关键.几种常见几何条件的转化,如下:

    1平行四边形条件的转化

    几何性质

    代数实现

    (1)对边平行

    斜率相等,或向量平行

    (2)对边相等

    长度相等,横()坐标差相等

    (3)对角线互相平分

    中点重合

    2.圆条件的转化

    几何性质

    代数实现

    (1)点在圆上

    点与直径端点向量数量积为零

    (2)点在圆外

    点与直径端点向量数量积为正数

    (3)点在圆内

    点与直径端点向量数量积为负数

    3.角条件的转化

    几何性质

    代数实现

    (1)锐角,直角,钝角

    角的余弦(向量数量积)的符号

    (2)倍角,半角,平分角

    角平分线性质,定理(夹角、到角公式)

    (3)等角(相等或相似)

    比例线段或斜率

    [教师备选例题]

    已知椭圆C经过点,且与椭圆Ey21有相同的焦点.

    (1)求椭圆C的标准方程;

    (2)若动直线lykxm与椭圆C有且只有一个公共点P,且与直线x4交于点Q,问:以线段PQ为直径的圆是否经过一定点M?若存在,求出定点M的坐标;若不存在,请说明理由.

    [](1)椭圆E的焦点为(±1,0)

    设椭圆C的标准方程为1(ab0)

    解得

    所以椭圆C的标准方程为1.

    (2)联立消去y

    (34k2)x28kmx4m2120

    所以Δ64k2m24(34k2)(4m212)0

    m234k2.P(xPyP)

    xP=-yPkxPm=-m

    P.假设存在定点M(st)满足题意,

     因为Q(4,4km)

    (4s,4kmt)

    所以·(4s)(4kmt)=-(1s)t(s24s3t2)0恒成立,

    解得

    所以存在点M(1,0)符合题意.

      1.已知抛物线的顶点在原点,焦点在x轴的正半轴上,直线xy10与抛物线相交于AB两点,且|AB|.

    (1)求抛物线的方程;

    (2)x轴上是否存在一点C,使ABC为正三角形?若存在,求出C点的坐标;若不存在,请说明理由.

    [](1)设所求抛物线的方程为y22px(p>0)

    A(x1y1)B(x2y2)

    消去y,得x22(1p)x10

    判别式Δ4(1p)248p4p2>0恒成立,

    由根与系数的关系得x1x22(1p)x1x21.

    因为|AB|

    所以

    所以121p2242p480

    所以pp=-(舍去)

    故抛物线的方程为y2x.

    (2)设弦AB的中点为D,则D.

    假设x轴上存在满足条件的点C(x0,0)

    因为ABC为正三角形,

    所以CDAB,所以x0

    所以C,所以|CD|.

    |CD||AB|

    与上式|CD|矛盾,所以x轴上不存在点C,使ABC为正三角形.

    2.已知椭圆C11(ab0)F为左焦点,A为上顶点,B(2,0)为右顶点,若||2||,抛物线C2的顶点在坐标原点,焦点为F.

    (1)求椭圆C1的标准方程;

    (2)是否存在过F点的直线,与椭圆C1和抛物线C2的交点分别是PQMN,使得SOPQSOMN?如果存在,求出直线的方程;如果不存在,请说明理由.

    [](1)依题意可知||2||

    a2,由B(2,0)为右顶点,得a2,解得b23

    所以C1的标准方程为1.

    (2)依题意可知C2的方程为y2=-4x,假设存在符合题意的直线,

    设直线方程为xky1

    P(x1y1)Q(x2y2)M(x3y3)N(x4y4)

    联立

    (3k24)y26ky90

    由根与系数的关系得y1y2y1y2

    |y1y2|

    联立y24ky40

    由根与系数的关系得y3y4=-4ky3y4=-4

    所以|y3y4|4

    SOPQSOMN,则|y1y2||y3y4|

    2,解得k±

    所以存在符合题意的直线,直线的方程为xy10xy10.

     

     

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2021版江苏高考数学一轮复习讲义:第8章第10节 圆锥曲线中的证明、探索性问题
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map