终身会员
搜索
    上传资料 赚现金

    2019版高考数学(理)一轮精选教师用书人教通用:第8章3第3讲 空间点、直线、平面之间的位置关系

    立即下载
    加入资料篮
    2019版高考数学(理)一轮精选教师用书人教通用:第8章3第3讲 空间点、直线、平面之间的位置关系第1页
    2019版高考数学(理)一轮精选教师用书人教通用:第8章3第3讲 空间点、直线、平面之间的位置关系第2页
    2019版高考数学(理)一轮精选教师用书人教通用:第8章3第3讲 空间点、直线、平面之间的位置关系第3页
    还剩13页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2019版高考数学(理)一轮精选教师用书人教通用:第8章3第3讲 空间点、直线、平面之间的位置关系

    展开
    第3讲 空间点、直线、平面之间的位置关系

    1.四个公理
    公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.
    公理2:过不在一条直线上的三点,有且只有一个平面.
    公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.
    公理4:平行于同一条直线的两条直线互相平行.
    公理2的三个推论:
    推论1:经过一条直线和直线外一点,有且只有一个平面.
    推论2:经过两条相交直线,有且只有一个平面.
    推论3:经过两条平行直线,有且只有一个平面.
    2.空间直线的位置关系
    (1)位置关系的分类

    (2)异面直线所成的角
    ①定义:设a,b是两条异面直线,经过空间中任一点O作直线a′∥a,b′∥b,把a′与b′所成的锐角(或直角)叫做异面直线a与b所成的角(或夹角).
    ②范围:.
    (3)等角定理
    空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.
    3.空间中直线与平面、平面与平面的位置关系
    (1)空间中直线和平面的位置关系

    位置关系
    图形表示
    符号表示
    公共点
    直线a在
    平面α内

    a⊂α
    有无数个
    公共点
    直线
    在平
    面外
    直线a与
    平面α
    平行

    a∥α
    没有公
    共点
    直线a与
    平面α
    斜交

    a∩α=A
    有且只
    有一个
    公共点
    直线a与
    平面α
    垂直

    a⊥α
    (2)空间中两个平面的位置关系

    位置关系
    图形表示
    符号表示
    公共点
    两平面平行

    α∥β
    没有公共点
    两平
    面相

    斜交

    α∩β=l
    有一条公共
    直线
    垂直

    α⊥β且
    α∩β=a

    判断正误(正确的打“√”,错误的打“×”)
    (1)如果两个不重合的平面α,β有一条公共直线a,就说平面α,β相交,并记作α∩β=a.(  )
    (2)两个平面α,β有一个公共点A,就说α,β相交于过A点的任意一条直线.(  )
    (3)两个平面ABC与DBC相交于线段BC.(  )
    (4)没有公共点的两条直线是异面直线.(  )
    答案:(1)√ (2)× (3)× (4)×
    (教材习题改编)下列命题正确的是(  )
    A.经过三点确定一个平面
    B.经过一条直线和一个点确定一个平面
    C.四边形确定一个平面
    D.两两相交且不共点的三条直线确定一个平面
    解析:选D.A选项考查公理2,即三点必须不在同一条直线上,才能确定一个平面;B选项如果点在直线上,则该直线和这个点不能确定一个平面;C选项中的四边形有可能是空间四边形,只有D是正确的.
    (教材习题改编)已知空间四边形的两条对角线相互垂直,顺次连接四边中点的四边形一定是(  )
    A.空间四边形       B.矩形
    C.菱形 D.正方形
    解析:选B.如图所示,易证四边形EFGH为平行四边形.
    因为E,F分别为AB,BC的中点,
    所以EF∥AC.
    又FG∥BD,
    所以∠EFG或其补角为AC与BD所成的角.
    而AC与BD所成的角为90°,
    所以∠EFG=90°,故四边形EFGH为矩形.
    (教材习题改编)如图所示,在正方体ABCD­A1B1C1D1中,E,F分别是AB,AD的中点,则异面直线B1C与EF所成的角的大小为________.
    解析:连接B1D1,D1C,则B1D1∥EF,故∠D1B1C为所求,又B1D1=B1C=D1C,所以∠D1B1C=60°.
    答案:60°
    在四棱锥P­ABCD中,底面ABCD为平行四边形,E,F分别为侧棱PC,PB的中点,则EF与平面PAD的位置关系为________,平面AEF与平面ABCD的交线是________.
    解析:由题易知EF∥BC,BC∥AD,所以EF∥AD,故EF∥平面PAD,因为EF∥AD,所以E,F,A,D四点共面,所以AD为平面AEF与平面ABCD的交线.
    答案:平行 AD


          平面的基本性质
    [典例引领]
    如图所示,在正方体ABCD­A1B1C1D1中,E、F分别是AB和AA1的中点.求证:E、C、D1、F四点共面.

    【证明】 如图所示,连接CD1、EF、A1B,
    因为E、F分别是AB和AA1的中点,
    所以EF∥A1B且EF=A1B.
    又因为A1D1綊BC,所以四边形A1BCD1是平行四边形,
    所以A1B∥CD1,所以EF∥CD1,
    所以EF与CD1确定一个平面α,
    所以E、F、C、D1∈α,
    即E、C、D1、F四点共面.

    若本例条件不变,如何证明“CE,D1F,DA交于一点”?
    证明:如图,由本例知EF∥CD1,且EF=CD1,
    所以四边形CD1FE是梯形,
    所以CE与D1F必相交,设交点为P,
    则P∈CE,且P∈D1F,
    又CE⊂平面ABCD,
    且D1F⊂平面A1ADD1,
    所以P∈平面ABCD,
    且P∈平面A1ADD1.
    又平面ABCD∩平面A1ADD1=AD,所以P∈AD,
    所以CE、D1F、DA三线交于一点.

    共面、共线、共点问题的证明方法
    (1)证明点或线共面,①首先由所给条件中的部分线(或点)确定一个平面,然后再证其余的线(或点)在这个平面内;②将所有条件分为两部分,然后分别确定平面,再证两平面重合.
    (2)证明点共线,①先由两点确定一条直线,再证其他各点都在这条直线上;②直接证明这些点都在同一条特定的直线上. 
    (3)证明线共点,先证其中两条直线交于一点,再证其他直线经过该点.
    [提醒] 点共线、线共点等都是应用公理3,证明点为两平面的公共点,即证明点在交线上.
    如图,空间四边形ABCD中,E,F分别是AB,AD的中点,G,H分别在BC,CD上,且BG∶GC=DH∶HC=1∶2.
    (1)求证:E,F,G,H四点共面;
    (2)设EG与FH交于点P,求证:P,A,C三点共线.
    证明:(1)因为E,F分别为AB,AD的中点,
    所以EF∥BD.
    在△BCD中,==,
    所以GH∥BD,
    所以EF∥GH.
    所以E,F,G,H四点共面.
    (2)因为EG∩FH=P,P∈EG,EG⊂平面ABC,
    所以P∈平面ABC.
    同理P∈平面ADC.
    所以P为平面ABC与平面ADC的公共点.
    又平面ABC∩平面ADC=AC,
    所以P∈AC,
    所以P,A,C三点共线.

          空间两直线的位置关系
    [典例引领]
    (构造法)若m,n为两条不重合的直线,α,β为两个不重合的平面,则下列命题中正确的是(  )
    ①若直线m,n都平行于平面α,则m,n一定不是相交直线;
    ②若直线m,n都垂直于平面α,则m,n一定是平行直线;
    ③已知平面α,β互相垂直,且直线m,n也互相垂直,若m⊥α,则n⊥β;
    ④若直线m,n在平面α内的射影互相垂直,则m⊥n.
    A.②           B.②③
    C.①③ D.②④
    【解析】 对于①,m与n可能平行,可能相交,也可能异面,①错误;
    对于②,由线面垂直的性质定理可知,m与n一定平行,故②正确;
    对于③,还有可能n∥β或n与β相交,③错误;
    对于④,把m,n放入正方体中,如图,取A1B为m,B1C为n,平面ABCD为平面α,则m与n在α内的射影分别为AB与BC,且AB⊥BC.而m与n所成的角为60°,故④错误.因此选A.
    【答案】 A

    (1)异面直线的判定方法

    (2)构造法判断空间两直线的位置关系
    对于线面、面面平行、垂直的位置关系的判定,可构造长方体或正方体化抽象为直观去判断,可避免因考虑不全面而导致错误,构造法实质上是结合题意构造符合题意的直观模型,然后将问题利用模型直观地作出判断,这样减少了抽象性. 
    [通关练习]
    1.已知空间三条直线l,m,n,若l与m异面,且l与n异面,则(  )
    A.m与n异面
    B.m与n相交
    C.m与n平行
    D.m与n异面、相交、平行均有可能
    解析:选D.在如图所示的长方体中,m,n1与l都异面,但是m∥n1,所以A,B错误;m,n2与l都异面,且m,n2也异面,所以C错误.故选D.

    2.在图中,G,H,M,N分别是正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形有________(填上所有正确答案的序号).

    解析:图①中,直线GH∥MN;图②中,G,H,N三点共面,但M∉平面GHN,因此直线GH与MN异面;图③中,连接MG,GM∥HN,因此GH与MN共面;图④中,G,M,N共面,但H∉平面GMN,因此GH与MN异面.所以在图②④中GH与MN异面.
    答案:②④

          异面直线所成的角(高频考点)
    从近几年的高考试题来看,异面直线所成的角是高考的热点,题型既有选择题又有填空题,也有解答题,难度为中低档题.高考对异面直线所成的角的考查主要有以下两个命题角度:
    (1)求异面直线所成的角或其三角函数值;
    (2)由异面直线所成角求其他量.
    [典例引领]
    角度一 求异面直线所成的角或其三角函数值
    (2017·高考全国卷Ⅱ)已知直三棱柱ABC­A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为(  )
    A. B.
    C. D.
    【解析】 如图所示,将直三棱柱ABC­A1B1C1补成直四棱柱ABCD­A1B1C1D1,连接AD1,B1D1,则AD1∥BC1,所以∠B1AD1或其补角为异面直线AB1与BC1所成的角.因为∠ABC=120°,AB=2,BC=CC1=1,所以AB1=,AD1=.在△B1D1C1中,∠B1C1D1=60°,B1C1=1,D1C1=2,所以B1D1==,所以cos∠B1AD1==,选择C.
    【答案】 C
    角度二 由异面直线所成角求其他量
    四面体ABCD中,E,F分别是AB,CD的中点.若BD,AC所成的角为60°,且BD=AC=1,则EF的长为________.
    【解析】 如图,取BC的中点O,连接OE,OF,
    因为OE∥AC,OF∥BD,
    所以OE与OF所成的锐角(或直角)即为AC与BD所成的角,而AC,BD所成角为60°,所以∠EOF=60°或∠EOF=120°.当∠EOF=60°时,EF=OE=OF=.
    当∠EOF=120°时,取EF的中点M,则OM⊥EF,
    EF=2EM=2×=.
    【答案】 或

     
    [通关练习]
    1.如图,正三棱柱ABC­A1B1C1的各棱长(包括底面边长)都是2,E,F分别是AB,A1C1的中点,则EF与侧棱C1C所成的角的余弦值是(  )

    A. B.
    C. D.2
    解析:选B.如图,取AC中点G,连接FG,EG,则FG∥C1C,FG=C1C;EG∥BC,EG=BC,故∠EFG即为EF与C1C所成的角,在Rt△EFG中,
    cos∠EFG===.
    2.(2018·安徽安庆模拟)正四面体ABCD中,E、F分别为AB、BD的中点,则异面直线AF、CE所成角的余弦值为________.
    解析:取BF的中点G,连接CG,EG,易知EG∥AF,所以异面直线AF、CE所成的角即为∠GEC(或其补角).不妨设正四面体棱长为2,易求得CE=,EG=,CG=,由余弦定理得cos∠GEC===,所以异面直线AF、CE所成角的余弦值为.
    答案:

    三个公理的作用
    公理1是判断一条直线是否在某个平面的依据,公理2及其推论是判断或证明点、线共面的依据,公理3是证明三线共点或三点共线的依据.要能够熟练用文字语言、符号语言、图形语言来表示公理.
    求两条异面直线所成角的大小,一般方法是通过平行移动直线,把异面问题转化为相交直线的夹角,体现了化归思想.
    易错防范
    (1)正确理解异面直线“不同在任何一个平面内”的含义,不要理解成“不在同一个平面内”.
    (2)不共线的三点确定一个平面,一定不能丢掉“不共线”的条件.
    (3)两条异面直线所成角的范围是(0°,90°].                                           

    1.已知异面直线a,b分别在平面α,β内,且α∩β=c,那么直线c一定(  )
    A.与a,b都相交
    B.只能与a,b中的一条相交
    C.至少与a,b中的一条相交
    D.与a,b都平行
    解析:选C.若c与a,b都不相交,则c与a,b都平行,根据公理4,知a∥b,与a,b异面矛盾.
    2.(2018·赣州四校联考)若平面α∥平面β,点A,C∈α,B,D∈β,则直线AC∥直线BD的充要条件是(  )
    A.AB∥CD        B.AD∥CB
    C.AB与CD相交 D.A,B,C,D四点共面
    解析:选D.因为平面α∥平面β,要使直线AC∥直线BD,则直线AC与BD是共面直线,即A,B,C,D四点必须共面.
    3.如图所示,平面α∩平面β=l,A∈α,B∈α,AB∩l=D,C∈β,C∉l,则平面ABC与平面β的交线是(  )
    A.直线AC
    B.直线AB
    C.直线CD
    D.直线BC
    解析:选C.由题意知,D∈l,l⊂β,所以D∈β,
    又因为D∈AB,所以D∈平面ABC,
    所以点D在平面ABC与平面β的交线上.
    又因为C∈平面ABC,C∈β,
    所以点C在平面β与平面ABC的交线上,
    所以平面ABC∩平面β=CD.
    4.如图,直三棱柱ABC­A1B1C1中,∠ACB=90°,AB=2,BC=1,D为AB的中点,则异面直线CD与A1C1所成的角的大小为(  )
    A.90° B.60°
    C.45° D.30°
    解析:选D.因为AC∥A1C1,所以异面直线CD与A1C1所成的角的平面角为∠ACD.由∠ACB=90°,AB=2,BC=1,D为AB的中点,可知,∠CAD=∠ACD=30°.
    5.(2018·河北邯郸调研)如图,在三棱锥S­ABC中,G1,G2分别是△SAB和△SAC的重心,则直线G1G2与BC的位置关系是(  )
    A.相交
    B.平行
    C.异面
    D.以上都有可能
    解析:选B.连接SG1并延长交AB于M,连接SG2并延长交AC于N,连接MN.由题意知SM为△SAB的中线,且SG1=SM,SN为△SAC的中线,且SG2=SN,所以在△SMN中,=,所以G1G2∥MN,
    易知MN是△ABC的中位线,所以MN∥BC,
    因此可得G1G2∥BC,即直线G1G2与BC的位置关系是平行.故选B.
    6.给出下列四个命题:
    ①平面外的一条直线与这个平面最多有一个公共点;
    ②若平面α内的一条直线a与平面β内的一条直线b相交,则α与β相交;
    ③若一条直线和两条平行线都相交,则这三条直线共面;
    ④若三条直线两两相交,则这三条直线共面.
    其中真命题的序号是________.
    解析:①正确,因为直线在平面外即直线与平面相交或直线平行于平面,所以最多有一个公共点.②正确,a,b有交点,则两平面有公共点,则两平面相交.③正确,两平行直线可确定一个平面,又直线与两平行直线的两交点在这两平行直线上,所以过这两交点的直线也在平面内,即三线共面.④错误,这三条直线可以交于同一点,但不在同一平面内.
    答案:①②③
    7.如图,正方体ABCD­A1B1C1D1中,M,N分别为棱C1D1,C1C的中点,有以下四个结论:
    ①直线AM与CC1是相交直线;
    ②直线AM与BN是平行直线;
    ③直线BN与MB1是异面直线;
    ④直线AM与DD1是异面直线.
    其中正确的结论为________(注:把你认为正确的结论的序号都填上).
    解析:直线AM与CC1是异面直线,直线AM与BN也是异面直线,故①②错误.
    答案:③④
    8.如图所示,在正三棱柱ABC­A1B1C1中,D是AC的中点,AA1∶AB=∶1,则异面直线AB1与BD所成的角为________.
    解析:如图,取A1C1的中点D1,连接B1D1,
    因为点D是AC的中点,所以B1D1∥BD,所以
    ∠AB1D1即为异面直线AB1与BD所成的角.连接AD1,设AB=a,则AA1=a,
    所以AB1=a,B1D1=a,
    AD1= =a.
    所以,在△AB1D1中,由余弦定理得,
    cos ∠AB1D1=
    ==,
    所以∠AB1D1=60°.
    答案:60°
    9.在正方体ABCD­A1B1C1D1中,
    (1)求AC与A1D所成角的大小;
    (2)若E,F分别为AB,AD的中点,求A1C1与EF所成角的大小.
    解:(1)如图,连接B1C,AB1,由ABCD­A1B1C1D1是正方体,易知A1D∥B1C,从而B1C与AC所成的角就是AC与A1D所成的角.
    因为AB1=AC=B1C,
    所以∠B1CA=60°.
    即A1D与AC所成的角为60°.
    (2)连接BD,在正方体ABCD­A1B1C1D1中,AC⊥BD,AC∥A1C1.
    因为E,F分别为AB,AD的中点,
    所以EF∥BD,所以EF⊥AC.
    所以EF⊥A1C1.
    即A1C1与EF所成的角为90°.
    10.如图,在三棱锥P­ABC中,PA⊥底面ABC,D是PC的中点.已知∠BAC=,AB=2,AC=2,PA=2.求:
    (1)三棱锥P­ABC的体积;
    (2)异面直线BC与AD所成角的余弦值.
    解:(1)S△ABC=×2×2=2,
    三棱锥P­ABC的体积为V=S△ABC·PA=×2×2=.

    (2)如图,取PB的中点E,连接DE,AE,则ED∥BC,所以∠ADE(或其补角)是异面直线BC与AD所成的角.
    在△ADE中,DE=2,AE=,AD=2,cos∠ADE==.
    故异面直线BC与AD所成角的余弦值为.

    1.(2018·河南百校联盟质检)在棱长为1的正方体ABCD­A1B1C1D1中,E,F分别是DD1和AB的中点,平面B1EF交棱AD于点P,则PE=(  )
    A. B.
    C. D.
    解析:选D.过点C1作C1G∥B1F,交直线CD于点G,过点E作HQ∥C1G,交CD、C1D1于点H、Q,连接B1Q,HF交AD于点P,HQ∥B1F,所以Q、H、F、B1四点共面,易求得HD=D1Q=,由△PDH∽△PAF可得==2,则PD=,在Rt△PED中,PE==,故选D.
    2.已知三棱锥A­BCD中,AB=CD,且直线AB与CD所成的角为60°,点M,N分别是BC,AD的中点,则直线AB和MN所成的角为________.
    解析:如图,取AC的中点P,连接PM,PN,
    则PM∥AB,且PM=AB,
    PN∥CD,且PN=CD,所以∠MPN为AB与CD所成的角(或其补角),则∠MPN=60°或∠MPN=120°.
    因为PM∥AB,所以∠PMN是AB与MN所成的角(或其补角).
    ①若∠MPN=60°,
    因为AB=CD,所以PM=PN,
    则△PMN是等边三角形,所以∠PMN=60°,
    即AB与MN所成的角为60°.
    ②若∠MPN=120°,则易知△PMN是等腰三角形,所以∠PMN=30°,即AB与MN所成的角为30°.
    综上,直线AB和MN所成的角为60°或30°.
    答案:60°或30°
    3.(2017·高考全国卷Ⅲ)a,b为空间中两条互相垂直的直线,等腰直角三角形ABC的直角边AC所在直线与a,b都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:
    ①当直线AB与a成60°角时,AB与b成30°角;
    ②当直线AB与a成60°角时,AB与b成60°角;
    ③直线AB与a所成角的最小值为45°;
    ④直线AB与a所成角的最大值为60°;
    其中正确的是________.(填写所有正确结论的编号)
    解析:由题意知,a,b,AC三条直线两两相互垂直,画出图形如图.
    不妨设图中所示正方体的棱长为1,
    则AC=1,AB=,
    斜边AB以直线AC 为旋转轴旋转,则A点保持不变,
    B点的运动轨迹是以C为圆心,1为半径的圆.
    以C为坐标原点,以的方向为x轴正方向,的方向为y轴正方向,的方向为z轴正方向建立空间直角坐标系.
    则D(1,0,0),A(0,0,1),
    直线a的单位方向向量a=(0,1,0),|a|=1.
    B点起始坐标为(0,1,0),
    直线b的单位方向向量b=(1,0,0),|b|=1.
    设B点在运动过程中的坐标B′(cos θ,sin θ,0),
    其中θ为与的夹角,θ∈[0,2π).
    那么AB′在运动过程中的向量=(cos θ,sin θ,-1),
    ||=.
    设直线AB′与a所成的夹角为α∈,
    cos α==|sin θ|∈.
    故α∈,所以③正确,④错误.
    设直线AB′与b所成的夹角为β,则β∈,
    cos β=

    =|cos θ|.
    当AB′与a成60°角时,α=,
    |sin θ|=cos α=cos=×=.
    因为cos2θ+sin2θ=1,
    所以|cos θ|=.
    所以cos β=|cos θ|=.
    因为β∈,所以β=,此时AB′与b成60°角.
    所以②正确,①错误.
    答案:②③
    4.在正方体ABCD­A1B1C1D1中,E,F分别为棱AA1、CC1的中点,则在空间中与三条直线A1D1,EF,CD都相交的直线有________条.
    解析:法一:如图,在EF上任意取一点M,直线A1D1与M确定一个平面,这个平面与CD有且仅有一个交点N,当M取不同的位置时就确定不同的平面,从而与CD有不同的交点N,而直线MN与这三条异面直线都有交点,所以在空间中与这三条直线都相交的直线有无数条.
    法二:在A1D1上任取一点P,过点P与直线EF作一个平面α,因为CD与平面α不平行,所以它们相交,设它们交于点Q,连接PQ(图略),则PQ与EF必然相交,即PQ为所求直线.由点P的任意性,知有无数条直线与三条直线A1D1,EF,CD都相交.
    答案:无数
    5.如图所示,在三棱锥P­ABC中,PA⊥平面ABC,∠BAC=60°,PA=AB=AC=2,E是PC的中点.
    (1)求证:AE与PB是异面直线;
    (2)求异面直线AE和PB所成角的余弦值.
    解:(1)证明:假设AE与PB共面,设平面为α.
    因为A∈α,B∈α,E∈α,
    所以平面α即为平面ABE,
    所以P∈平面ABE,
    这与P∉平面ABE矛盾,
    所以AE与PB是异面直线.
    (2)取BC的中点F,
    连接EF、AF,则EF∥PB,
    所以∠AEF(或其补角)就是异面直线AE和PB所成的角.
    因为∠BAC=60°,
    PA=AB=AC=2,PA⊥平面ABC,
    所以AF=,AE=,EF=,
    cos∠AEF=
    ==,
    所以异面直线AE和PB所成角的余弦值为.
    6.如图,E,F,G,H分别是空间四边形ABCD各边上的点,且AE∶EB=AH∶HD=m,CF∶FB=CG∶GD=n.
    (1)证明:E,F,G,H四点共面;
    (2)m,n满足什么条件时,四边形EFGH是平行四边形?
    (3)在(2)的条件下,若AC⊥BD,试证明:EG=FH.
    解:(1)因为AE∶EB=AH∶HD,所以EH∥BD.
    又CF∶FB=CG∶GD,所以FG∥BD.所以EH∥FG.
    所以E,F,G,H四点共面.
    (2)当EH∥FG,且EH=FG时,四边形EFGH为平行四边形.
    因为==,所以EH=BD.
    同理可得FG=BD,由EH=FG,得m=n.
    故当m=n时,四边形EFGH为平行四边形.
    (3)证明:当m=n时,AE∶EB=CF∶FB,所以EF∥AC,又EH∥BD,所以∠FEH是AC与BD所成的角(或其补角),因为AC⊥BD,所以∠FEH=90°,从而平行四边形EFGH为矩形,所以EG=FH.
    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2019版高考数学(理)一轮精选教师用书人教通用:第8章3第3讲 空间点、直线、平面之间的位置关系
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map