还剩12页未读,
继续阅读
所属成套资源:2019高考人教B版数学理科一轮全国通用版讲义
成套系列资料,整套一键下载
2019版高考数学(理)创新大一轮人教B全国通用版讲义:第九章平面解析几何第1节
展开
第1节 直线的方程
最新考纲 1.在平面直角坐标系中,结合具体图形,确定直线位置的几何要素;2.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式;3.掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.
知 识 梳 理
1.直线的倾斜角
(1)定义:x轴正向与直线向上的方向所成的角叫做这条直线的倾斜角,规定与x轴平行或重合的直线的倾斜角为零度角.
(2)倾斜角的范围:[0,π).
2.直线的斜率
(1)定义:直线y=kx+b中的系数k叫做这条直线的斜率,垂直于x轴的直线斜率不存在.
(2)计算公式:若由A(x1,y1),B(x2,y2)确定的直线不垂直于x轴,则k=(x1≠x2).若直线的倾斜角为θ(θ≠),则k=tan_θ.
3.直线方程的五种形式
名称
几何条件
方程
适用条件
斜截式
纵截距、斜率
y=kx+b
与x轴不垂直的直线
点斜式
过一点、斜率
y-y0=k(x-x0)
两点式
过两点
=
与两坐标轴均不垂直的直线
截距式
纵、横截距
+=1
不过原点且与两坐标轴均不垂直的直线
一般式
Ax+By+C=0(A2+B2≠0)
所有直线
[常用结论与微点提醒]
1.直线的倾斜角α和斜率k之间的对应关系:
α
0°
0°
相关资料
更多