开学活动
搜索
    上传资料 赚现金

    2019版高考数学(理)创新大一轮人教B全国通用版讲义:第十二章推理与证明、算法、复数第5节

    2019版高考数学(理)创新大一轮人教B全国通用版讲义:第十二章推理与证明、算法、复数第5节第1页
    2019版高考数学(理)创新大一轮人教B全国通用版讲义:第十二章推理与证明、算法、复数第5节第2页
    2019版高考数学(理)创新大一轮人教B全国通用版讲义:第十二章推理与证明、算法、复数第5节第3页
    还剩8页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2019版高考数学(理)创新大一轮人教B全国通用版讲义:第十二章推理与证明、算法、复数第5节

    展开

    第5节 复数
    最新考纲 1.理解复数的基本概念;2.理解复数相等的充要条件;3.了解复数的代数表示法及其几何意义;4.会进行复数代数形式的四则运算;5.了解复数代数形式的加、减运算的几何意义.

    知 识 梳 理
    1.复数的有关概念
    内容
    意义
    备注
    复数的概念
    形如a+bi(a∈R,b∈R)的数叫复数,其中实部为a,虚部为b
    若b=0,则a+bi为实数;若a=0且b≠0,则a+bi为纯虚数
    复数相等
    a+bi=c+di⇔a=c且b=d(a,b,c,d∈R)

    共轭复数
    a+bi与c+di共轭⇔a=c且b=-d(a,b,c,d∈R)

    复平面
    建立平面直角坐标系来表示复数的平面叫做复平面,x轴叫实轴,y轴叫虚轴
    实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数,各象限内的点都表示虚数
    复数的模
    设对应的复数为z=a+bi,则向量的长度叫做复数z=a+bi的模
    |z|=|a+bi|=
    2.复数的几何意义
    复数集C和复平面内所有的点组成的集合是一一对应的,复数集C与复平面内所有以原点O为起点的向量组成的集合也是一一对应的,即
    (1)复数z=a+bi复平面内的点Z(a,b)(a,b∈R).
    (2)复数z=a+bi(a,b∈R)平面向量.
    3.复数的运算
    设z1=a+bi,z2=c+di(a,b,c,d∈R),则
    (1)加法:z1+z2=(a+bi)+(c+di)=(a+c)+(b+d)i;
    (2)减法:z1-z2=(a+bi)-(c+di)=(a-c)+(b-d)i;
    (3)乘法:z1·z2=(a+bi)·(c+di)=(ac-bd)+(ad+bc)i;
    (4)除法:==
    =(c+di≠0).
    [常用结论与微点提醒]
    1.i4n=1,i4n+1=i,i4n+2=-1,i4n+3=-i,i4n+i4n+1+i4n+2+i4n+3=0,n∈N+.
    2.(1±i)2=±2i;=i;=-i.
    诊 断 自 测
    1.思考辨析(在括号内打“√”或“×”)
    (1)复数z=a+bi(a,b∈R)中,虚部为bi.(  )
    (2)复数中有相等复数的概念,因此复数可以比较大小.(  )
    (3)原点是实轴与虚轴的交点.(  )
    (4)复数的模实质上就是复平面内复数对应的点到原点的距离,也就是复数对应的向量的模.(  )
    解析 (1)虚部为b;(2)虚数不可以比较大小.
    答案 (1)× (2)× (3)√ (4)√
    2.(2016·全国Ⅰ卷)设(1+2i)(a+i)的实部与虚部相等,其中a为实数,则a=(  )
    A.-3 B.-2 C.2 D.3
    解析 因为(1+2i)(a+i)=a-2+(2a+1)i,所以a-2=2a+1,解得a=-3.
    答案 A
    3.(2017·全国Ⅲ卷)复平面内表示复数z=i(-2+i)的点位于(  )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    解析 由题意,得z=-1-2i,其在复平面内所对应的点位于第三象限.
    答案 C
    4.(2017·江苏卷)已知复数z=(1+i)(1+2i),其中i是虚数单位,则z的模是________.
    解析 z=(1+i)(1+2i)=-1+3i,所以|z|==.
    答案 
    5.(教材习题改编)已知(1+2i)z=4+3i,则z=________.
    解析 ∵==
    ==2-i,∴z=2+i.
    答案 2+i

    考点一 复数的有关概念
    【例1】 (1)(2017·全国Ⅰ卷)下列各式的运算结果为纯虚数的是(  )
    A.i(1+i)2 B.i2(1-i)
    C.(1+i)2 D.i(1+i)
    (2)(2017·全国Ⅲ卷)设复数z满足(1+i)z=2i,则|z|=(  )
    A. B. C. D.2
    (3)若(1+i)+(2-3i)=a+bi(a,b∈R,i是虚数单位),则a,b的值分别等于(  )
    A.3,-2 B.3,2 C.3,-3 D.-1,4
    解析 (1)由(1+i)2=2i为纯虚数知选C.
    (2)z====i+1,则|z|==.
    (3)(1+i)+(2-3i)=3-2i=a+bi,所以a=3,b=-2.
    答案 (1)C (2)C (3)A
    规律方法 1.复数的分类及对应点的位置都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可.
    2.解题时一定要先看复数是否为a+bi(a,b∈R)的形式,以确定实部和虚部.
    【训练1】 (1)(2018·广东名校联考)已知z=(i为虚数单位),则z的共轭复数的虚部为(  )
    A.-i B.i C.-1 D.1
    (2)(2017·全国Ⅰ卷)设有下面四个命题
    p1:若复数z满足∈R,则z∈R;
    p2:若复数z满足z2∈R,则z∈R;
    p3:若复数z1,z2满足z1z2∈R,则z1=z2;
    p4:若复数z∈R,则z∈R.
    其中的真命题为(  )
    A.p1,p3 B.p1,p4 C.p2,p3 D.p2,p4
    解析 (1)∵z===-i,则z=i,则z的虚部为1.
    (2)p1:设z=a+bi(a,b∈R),则==∈R,得到b=0,所以z∈R,故p1正确;
    p2:若z2=-1,满足z2∈R,而z=±i,不满足z∈R,故p2不正确;
    p3:若z1=1,z2=2,则z1z2=2,满足z1z2∈R,而它们实部不相等,不是共轭复数,故p3不正确;
    p4:因复数z∈R,所以z的虚部为0,所以它的共轭复数是它本身,也属于实数,故p4正确.
    答案 (1)D (2)B
    考点二 复数的几何意义
    【例2】 (1)复数z=i(1+i)在复平面内所对应点的坐标为(  )
    A.(1,1) B.(-1,-1)
    C.(1,-1) D.(-1,1)
    (2)(2017·北京卷)若复数(1-i)(a+i)在复平面内对应的点在第二象限,则实数a的取值范围是(  )
    A.(-∞,1) B.(-∞,-1)
    C.(1,+∞) D.(-1,+∞)
    解析 (1)因为z=i(1+i)=-1+i,故复数z=i(1+i)在复平面内所对应点的坐标为(-1,1).
    (2)(1-i)(a+i)=a+1+(1-a)i的对应点在第二象限,则∴a

    英语朗读宝
    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map