![2021年高考数学一轮精选练习:60《分类加法计数原理与分步乘法计数原理》(含解析)第1页](http://img-preview.51jiaoxi.com/3/3/5752017/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021年高考数学一轮精选练习:60《分类加法计数原理与分步乘法计数原理》(含解析)第2页](http://img-preview.51jiaoxi.com/3/3/5752017/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:2021年高考数学一轮精选练习全套(含解析)
2021年高考数学一轮精选练习:60《分类加法计数原理与分步乘法计数原理》(含解析)
展开2021年高考数学一轮精选练习:
60《分类加法计数原理与分步乘法计数原理》
一 、选择题
1.从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a,b组成复数a+bi,其中虚数的个数是( )
A.30 B.42 C.36 D.35
2.有4位教师在同一年级的4个班中各教一个班的数学,在数学检测时要求每位教师不能在本班监考,则不同的监考方法有( )
A.8种 B.9种 C.10种 D.11种
3.三个人踢毽,互相传递,每人每次只能踢一下,由甲开始踢,经过4次传递后,毽又被踢回给甲,则不同的传递方式共有( B )
A.4种 B.6种 C.10种 D.16种
4.我们把各位数字之和为6的四位数称为“六合数”(如2 013是“六合数”),则首位为2的“六合数”共有( )
A.18个 B.15个 C.12个 D.9个
5.某班新年联欢会原定的6个节目已排成节目单,开演前又增加了3个新节目,如果将这3个新节目插入节目单中,那么不同的插法种数为( )
A.504 B.210 C.336 D.120
6.把3种农作物,种植在如图所示的4块土地里,要求相邻地块不种同一种农作物,则不同的种植方法种数为( )
A.24 B.18 C.12 D.6
7.某微信群中有甲、乙、丙、丁、戊五个人玩抢红包游戏,现有4个红包,每人最多抢一个,且红包被全部抢完,4个红包中有2个6元的,1个8元的,1个10元的(红包中金额相同视为相同红包),则甲、乙都抢到红包的情况有( C )
A.18种 B.24种 C.36种 D.48种
8.如图,用6种不同的颜色把图中A,B,C,D四块区域分开,若相邻区域不能涂同一种颜色,则不同的涂法共有( )
A.400种 B.460种 C.480种 D.496种
9.如图所示,用4种不同的颜色涂入图中的矩形A,B,C,D中,要求相邻的矩形涂色不同,则不同的涂法有( )
A.72种 B.48种 C.24种 D.12种
10.已知集合A={(x,y)|x2+y2≤1,x,y∈Z},B={(x,y)||x|≤2,|y|≤2,x,y∈Z},定义集合A⊕B={(x1+x2,y1+y2)|(x1,y1)∈A,(x2,y2)∈B},则A⊕B中元素的个数为( )
A.77 B.49 C.45 D.30
二 、填空题
11.从-1,0,1,2这四个数中选三个不同的数作为函数f(x)=ax2+bx+c的系数,则可组成18个不同的二次函数,其中偶函数有 个(用数字作答).
12.五名学生报名参加四项体育比赛,每人限报一项,则不同的报名方法的种数为45.五名学生争夺四项比赛的冠军(冠军不并列),则获得冠军的可能性有 种.
13.已知集合M={1,2,3,4},集合A,B为集合M的非空子集,若对∀x∈A,y∈B,x<y恒成立,则称(A,B)为集合M的一个“子集对”,则集合M的“子集对” 共有 个.
14.一个旅游景区的游览线路如图所示,某人从P点处进,Q点处出,沿图中线路游览A,B,C三个景点及沿途风景,则不同(除交汇点O外)的游览线路有 种.(用数字作答)
15.有A,B,C型高级电脑各一台,甲、乙、丙、丁 4个操作人员的技术等级不同,甲、乙会操作三种型号的电脑,丙不会操作C型电脑,而丁只会操作A型电脑.从这4个操作人员中选3人分别去操作这三种型号的电脑,则不同的选派方法有 种(用数字作答).
16.回文数是指从左到右与从右到左读都一样的正整数,如22,121,3443,94249等.显然2位回文数有9个:11,22,33,…,99,3位回文数有90个:101,111,121,…,191,202,…,999.则
(1)4位回文数有 个;
(2)2n+1(n∈N*)位回文数有 个.
答案解析
1.答案为:C;
解析:因为a+bi为虚数,所以b≠0,即b有6种取法,a有6种取法,由分步乘法计数原理知可以组成6×6=36个虚数.
2.答案为:B;
解析:设四位监考教师分别为A,B,C,D,所教班分别为a,b,c,d,假设A监考b,则余下三人监考剩下的三个班,共有3种不同方法,同理A监考c,d时,也分别有3种不同方法,由分类加法计数原理,共有3+3+3=9(种)不同的监考方法.
3.答案为:B;
解析:分两类:甲第一次踢给乙时,满足条件的有3种传递方式(如图),
同理,甲先传给丙时,满足条件的也有3种传递方式.
由分类加法计数原理可知,共有3+3=6(种)传递方法.
4.答案为:B;
解析:依题意,这个四位数的百位数、十位数、个位数之和为4.由4,0,0组成3个数分别为400,040,004;由3,1,0组成6个数分别为310,301,130,103,013,031;由2,2,0组成3个数分别为220,202,022;由2,1,1组成3个数分别为211,121,112.共计3+6+3+3=15(个).
5.答案为:A;
解析:分三步,先插一个新节目,有7种方法,再插第二个新节目,有8种方法,最后插第三个节目,有9种方法.故共有7×8×9=504种不同的插法.
6.答案为:B;
解析:先分步,从左到右先种第一块,有3种方法;再种第二块,有2种方法.下面分类,若第三块与第一块相同,有1种方法,此时第四块有1种方法,共有3×2×1×1=6种;若第三块与第一块不同,有1种方法,此时第四块有2种方 法,共有3×2×1×2=12种.综上,共有6+12=18种不同的种植方法.
7.答案为:C;
解析:①若甲、乙抢到的是一个6元和一个8元的,剩下2个红包,则被剩下的3人中的2人抢走,有AA=12(种)情况;②若甲、乙抢到的是一个6元和一个10元的,剩下2个红包,则被剩下的3人中的2人抢走,有AA=12(种)情况;③若甲、乙抢到的是一个8元和一个10元的,剩下2个红包,则被剩下的3人中的2人抢走有AC=6(种)情况;④若甲、乙抢到的是2个6元的,剩下2个红包,则被剩下的3人中的2人抢走,有A=6(种)情况.
根据分类加法计数原理可知,共有36种情况.
8.答案为:C;
解析:由题意知本题是一个分类计数问题.只用三种颜色涂色时,有CCC=120(种).
用四种颜色涂色时,有CCCA=360(种),综上得不同的涂法共有480种,故选C.
9.答案为:A;
解析:法一 首先涂A有4种涂法,则涂B有3种涂法,C与A,B相邻,则C有2种涂法,D只与C相邻,则D有3种涂法,所以共有4×3×2×3=72种涂法.
法二 按要求涂色至少需要3种颜色,故分两类:一是4种颜色都用,这时A有4种涂法,B有3种涂法,C有2种涂法,D有1种涂法,共有4×3×2×1=24(种)涂法;二是用3种颜色,这时A,B,C的涂法有4×3×2=24(种),D只要不与C同色即可,故D有2种涂法,所以不同的涂法共有24+24×2=72(种).
10.答案为:C;
解析:A={(x,y)|x2+y2≤1,x,y∈Z}={(x,y)|x=±1,y=0;或x=0,y=±1;或x=0,y=0},
B={(x,y)||x|≤2,|y|≤2,x,y∈Z}={(x,y)|x=-2,-1,0,1,2;y=-2,-1,0,1,2},A⊕B表示点集.由x1=-1,0,1,x2=-2,-1,0,1,2,得x1+x2=-3,-2,-1,0,1,2,3,共7种取值可能.同理,由y1=-1,0,1,y2=-2,-1,0,1,2,得y1+y2=-3,-2,-1,0,1,2,3,共7种取值可能.当x1+x2=-3或3时,y1+y2可以为-2,-1,0,1,2中的一个值,分别构成5个不同的点,当x1+x2=-2,-1,0,1,2时,y1+y2可以为-3,-2,-1,0,1,2,3中的一个值,分别构成7个不同的点,故A⊕B共有2×5+5×7=45个元素.
一 、填空题
11.答案为:6;
解析:一个二次函数对应着a,b,c(a≠0)的一组取值,a的取法有3种,b的取法有3种,c的取法有2种,由分步乘法计数原理知共有3×3×2=18(个)二次函数.若二次函数为偶函数,则b=0,同上可知共有3×2=6(个)偶函数.
12.答案为:54;
解析:五名学生参加四项体育比赛,每人限报一项,可逐个学生落实,每个学生有4种报名方法,共有45种不同的报名方法.五名学生争夺四项比赛的冠军,可对4个冠军逐一落实,每个冠军有5种获得的可能性,共有54种获得冠军的可能性.
13.答案为:17;
解析:A={1}时,B有23-1种情况;
A={2}时,B有22-1种情况;
A={3}时,B有1种情况;
A={1,2}时,B有22-1种情况;
A={1,3},{2,3},{1,2,3}时,B均有1种情况,
故满足题意的“子集对”共有7+3+1+3+3=17个.
14.答案为:48;
解析:根据题意,从点P处进入后,参观第一个景点时,有6个路口可以选择,从中任选一个,有6种选法;参观完第一个景点,参观第二个景点时,有4个路口可以选择,从中任选一个,有4种选法;参观完第二个景点,参观第三个景点时,有2个路口可以选择,从中任取一个,有2种选法.由分步乘法计数原理知,共有6×4×2=48(种)不同游览线路.
15.答案为:8;
解析:由于丙、丁两位操作人员的技术问题,要完成“从4个操作人员中选3人去操作这三种型号的电脑”这件事,则甲、乙两人至少要选派一人,可分四类:
第1类,选甲、乙、丙3人,由于丙不会操作C型电脑,分2步安排这3人操作的电脑的型号,有2×2=4种方法;
第2类,选甲、乙、丁3人,由于丁只会操作A型电脑,这时安排3人分别去操作这三种型号的电脑,有2种方法;
第3类,选甲、丙、丁3人,这时安排3人分别去操作这三种型号的电脑,只有1种方法;
第4类,选乙、丙、丁3人,同样也只有1种方法.
根据分类加法计数原理,共有4+2+1+1=8种选派方法.
16.答案为:(1)90;(2)9×10n
解析:(1)4位回文数相当于填4个方格,首尾相同,且不为0,共9种填法,中间两位一样,有10种填法,共有9×10=90(种)填法,即4位回文数有90个.
(2)根据回文数的定义,此问题也可以转化成填方格.结合分步乘法计数原理,知有9×10n种填法.