年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2021年高考数学一轮精选练习:63《随机事件的概率》(含解析)

    2021年高考数学一轮精选练习:63《随机事件的概率》(含解析)第1页
    2021年高考数学一轮精选练习:63《随机事件的概率》(含解析)第2页
    2021年高考数学一轮精选练习:63《随机事件的概率》(含解析)第3页
    还剩3页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021年高考数学一轮精选练习:63《随机事件的概率》(含解析)

    展开

    2021年高考数学一轮精选练习:63《随机事件的概率》         、选择题1.在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若事件2张全是移动卡的概率是,那么概率是的事件是(   )A.至多有一张移动卡          B.恰有一张移动卡C.都不是移动卡              D.至少有一张移动卡 2.已知随机事件A,B发生的概率满足条件P(AB)=,某人猜测事件发生,则此人猜测正确的概率为(   )A.1            B.           C.        D.0 3.我国古代数学名著《数书九章》有米谷粒分题:粮仓开仓收粮,有人送来米1 534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为(  )A.134石      B.169石       C.338石        D.1 365石 4.甲、乙、丙三人站成一排照相,甲排在左边的概率是(    )A.1           B.           C.           D. 5.某射手在一次射击中,射中10环,9环,8环的概率分别为0.2,0.3,0.1,则此射手在一次射击中不超过8环的概率为(   )A.0.5          B.0.3          C.0.6         D.0.9 6.掷一个骰子的试验,事件A表示出现小于5的偶数点,事件B表示出现小于5的点数,若表示B的对立事件,则一次试验中,事件A发生的概率为(   )A.         B.          C.           D. 7.若随机事件A,B互斥,A,B发生的概率均不等于0,且P(A)=2-a,P(B)=4a-5,则实数a的取值范围是( D )A.         B.      C.         D. 8.口袋中有100个大小相同的红球、白球、黑球,其中红球45个,从口袋中摸出一个球,摸出白球的概率为0.23,则摸出黑球的概率为(   )A.0.45        B.0.67        C.0.64         D.0.32              、填空题9.某网店根据以往某品牌衣服的销售记录,绘制了日销售量的频率分布直方图,如图所示,由此估计日销售量不低于50件的概率为         . 10.甲、乙两人下棋,两人下成和棋的概率是,乙获胜的概率是,则乙不输的概率是       . 11.键盘侠一词描述了部分网民在现实生活中胆小怕事、自私自利,却习惯在网络上大放厥词的一种现象.某地新闻栏目对该地区群众对键盘侠的认可程度进行调查:在随机抽取的50人中,有14人持认可态度,其余持反对态度,若该地区有9 600人,则可估计该地区对键盘侠持反对态度的有       人. 12.一只袋子中装有7个红玻璃球,3个绿玻璃球,从中无放回地任意抽取两次,每次只取一个,取得两个红球的概率为,取得两个绿球的概率为,则取得两个同颜色的球的概率为;至少取得一个红球的概率为           . 13.某学校成立了数学、英语、音乐3个课外兴趣小组,3个小组分别有39,32,33个成员,一些成员参加了不止一个小组,具体情况如图所示.现随机选取一个成员,他属于至少2个小组的概率是      ,他属于不超过2个小组的概率是           .          、解答题14.某保险公司利用简单随机抽样方法对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:(1)若每辆车的投保金额均为2 800元,估计赔付金额大于投保金额的概率;(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4 000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4 000元的概率.       15.某河流上的一座水力发电站,每年六月份的发电量Y(单位:万千瓦时)与该河上游在六月份的降雨量X(单位:毫米)有关.据统计,当X=70时,Y=460;X每增加10,Y增加5.已知近20年X的值为140,110,160,70,200,160,140,160,220,200,110,160,160,200,140,110,160,220,140,160.(1)完成如下的频率分布表:近20年六月份降雨量频率分布表(2)假定今年六月份的降雨量与近20年六月份降雨量的分布规律相同,并将频率视为概率,求今年六月份该水力发电站的发电量低于490万千瓦时或超过530万千瓦时的概率.            16.某电子商务公司随机抽取1 000名网络购物者进行调查.这1 000名购物者2018年网上购物金额(单位:万元)均在区间[0.3,0.9]内,样本分组为:[0.3,0.4),[0.4,0.5),[0.5,0.6),[0.6,0.7),[0.7,0.8),[0.8,0.9],购物金额的频率分布直方图如下:电子商务公司决定给购物者发放优惠券,其金额(单位:元)与购物金额关系如下:(1)求这1 000名购物者获得优惠券金额的平均数;(2)以这1 000名购物者购物金额落在相应区间的频率作为概率,求一个购物者获得优惠券金额不少于150元的概率.            
    答案解析1.答案为:A;解析:至多有一张移动卡包含一张移动卡,一张联通卡两张全是联通卡两个事件,它是2张全是移动卡的对立事件,故选A. 2.答案为:C;解析:事件与事件AB是对立事件,P()=1-P(AB)=1-=,故选C. 3.答案为:B;解析:依题意,这批米内夹谷约为×1 534169石. 4.答案为:D;解析:甲、乙、丙三人站成一排照相的站法有甲乙丙、甲丙乙、乙甲丙、乙丙甲、丙甲乙、丙乙甲,共6种,其中甲排在左边的站法为2种,甲排在左边的概率是=.故选D. 5.答案为:A;解析:依题设知,此射手在一次射击中不超过8环的概率为1-(0.2+0.3)=0.5. 6.答案为:C;解析:掷一个骰子的试验有6种可能结果.依题意P(A)==,P(B)==P()=1-P(B)=1-=.表示出现5点或6点的事件,因此事件A与互斥,从而P(A)=P(A)+P()==. 7.答案为:D;解析:由题意可得解得<a. 8.答案为:D;解析:设摸出一个红球为事件A,摸出一个白球为事件B,摸出一个黑球为事件C,显然事件A,B,C都互斥,且C与A+B对立.因为P(A)==0.45,P(B)=0.23,所以P(A+B)=P(A)+P(B)=0.45+0.23=0.68,P(C)=1-P(A+B)=1-0.68=0.32. 9.答案为:0.55;解析:用频率估计概率为1-(0.015+0.03)×10=0.55. 10.答案为:解析:乙不输包含两人下成和棋或乙获胜,所以乙不输的概率为=. 11.答案为:6_912;解析:在随机抽取的50人中,持反对态度的频率为1-=则可估计该地区对键盘侠持反对态度的有9 600×=6 912(人). 12.答案为:解析:由于取得两个红球取得两个绿球是互斥事件,取得两个同色球,只需两互斥事件有一个发生即可,因而取得两个同色球的概率为P==.由于事件A至少取得一个红球与事件B取得两个绿球是对立事件,则至少取得一个红球的概率为P(A)=1-P(B)=1-=. 13.答案为:.解析:至少2个小组包含2个小组3个小组两种情况,故他属于至少2个小组的概率为P==.不超过2个小组包含1个小组2个小组,其对立事件是3个小组.故他属于不超过2个小组的概率是P=1-=.           、解答题14.解:(1)设A表示事件赔付金额为3 000元B表示事件赔付金额为4 000元以频率估计概率得P(A)==0.15,P(B)==0.12.由于投保金额为2 800元,赔付金额大于投保金额对应的情形是赔付金额为3 000元和4 000元,所以其概率为P(A)+P(B)=0.15+0.12=0.27.(2)设C表示事件投保车辆中新司机获赔4 000元由已知,可得样本车辆中车主为新司机的有0.1×1 000=100(辆),而赔付金额为4 000元的车辆中,车主为新司机的有0.2×120=24(辆),所以样本车辆中新司机车主获赔金额为4 000元的频率为=0.24,由频率估计概率得P(C)=0.24. 15.解:(1)在所给数据中,降雨量为110毫米的有3个,为160毫米的有7个,为200毫米的有3个.故近20年六月份降雨量频率分布表为:(2)根据题意,Y=460+×5=+425,故P(发电量低于490万千瓦时或超过530万千瓦时)=P(Y<490或Y>530)=P(X<130或X>210)=P(X=70)+P(X=110)+P(X=220)==.故今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率为. 16.解:(1)购物者的购物金额x与获得优惠券金额y的频率分布如下表:这1 000名购物者获得优惠券金额的平均数为(50×400+100×300+150×280+200×20)=96.(2)由获得优惠券金额y与购物金额x的对应关系及(1)知P(y=150)=P(0.6x<0.8)=0.28,P(y=200)=P(0.8x0.9)=0.02,从而,获得优惠券金额不少于150元的概率为P(y150)=P(y=150)+P(y=200)=0.28+0.02=0.3.  

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map