(江苏版)2019届高考物理一轮复习课时检测12《 抛体运动》(含解析)
展开课时跟踪检测(十二) 抛体运动
对点训练:抛体运动的基本规律
1.(2018·杭州模拟)农历12月11日是千祥镇的交流会,程老师和他七岁的儿子在逛街的过程中,发现了一个游戏“套圈游戏”,套中啥,就可以拿走那样东西,两元一次,程老师试了一次,套中了一个距离起点水平距离为2 m的“熊大”雕像,他儿子看了,也心痒痒,想把距离起点相等水平距离的“光头强”雕像也套中。假设他们套圈的时候圈的运动是平抛运动,程老师抛圈的速度为2 m/s,试问他儿子要将像套中,应怎么办( )
A.大于2 m/s的速度抛出 B.等于2 m/s的速度抛出
C.小于2 m/s的速度抛出 D.无法判断
解析:选A 根据平抛运动的规律可知,竖直方向h=gt2,水平方向的位移x=vt=v;由于程老师抛圈的速度为2 m/s能够套住,他儿子的身高要低于他,要想套住必须增加水平速度;所以A正确,B、C、D错误。
2.(2018·佛山模拟)2016 年起,我国空军出动“战神”轰6K 等战机赴南海战斗巡航。某次战备投弹训练,飞机在水平方向做加速直线运动的过程中投下一颗模拟弹。飞机飞行高度为h,重力加速度为g,不计空气阻力,则以下说法正确的是( )
A.在飞行员看来模拟弹做平抛运动
B.模拟弹下落到海平面的时间为
C.在飞行员看来模拟弹做自由落体运动
D.若战斗机做加速向下的俯冲运动,此时飞行员一定处于失重状态
解析:选B 模拟弹相对于地面做平抛运动,水平方向做匀速直线运动,而且水平速度与刚被投下时飞机的速度相同。由于飞机做加速直线运动,速度不断增大,所以在飞行员看来模拟弹做的不是平抛运动,也不是自由落体运动,故A、C错误。模拟弹竖直方向做自由落体运动,由h=gt2得t=,故B正确。若战斗机做加速向下的俯冲运动,若飞机斜向下做加速运动时,具有竖直向下的分加速度,此时飞行员处于失重状态;若飞机斜向下做加速曲线运动时,有斜向上的向心加速度,具有竖直向上的分加速度,此时飞行员处于超重状态,故D错误。
3.(2018·呼伦贝尔一模)如图所示,在同一平台上的O点水平抛出的三个物体,分别落到a、b、c三点,则三个物体运动的初速度va、vb、vc和运动的时间ta、tb、tc的关系分别是( )
A.va>vb>vc ta>tb>tc B.va<vb<vc ta=tb=tc
C.va<vb<vc ta>tb>tc D.va>vb>vc ta<tb<tc
解析:选C 三个物体落地的高度ha>hb>hc,根据h=gt2,知ta>tb>tc,根据xa<xb<xc,x=vt知,a的水平位移最短,时间最长,则速度最小;c的水平位移最长,时间最短,则速度最大,所以有va<vb<vc。故C正确,A、B、D错误。
4.(2018·盐城一模)如图所示,从A点由静止释放一弹性小球,一段时间后与固定斜面上B点发生碰撞,碰后小球速度大小不变,方向变为水平方向,又经过相同的时间落在地面上C点,已知地面上D点位于B点正下方,B、D间距离为h,则( )
A.A、B两点间距离为 B.A、B两点间距离为
C.C、D两点间距离为2h D.C、D两点间距离为h
解析:选C 小球在AB段自由下落,小球在BC段做平抛运动,两段过程运动时间相同,所以A、B两点间距离与B、D两点间距离相等,均为h,故A、B错误;BC段平抛初速度v=,运动的时间t= ,所以C、D两点间距离x=vt=2h,故C正确,D错误。
5.[多选]质量为m的物体以速度v0水平抛出,经过一段时间速度大小变为v0,不计空气阻力,重力加速度为g,以下说法正确的是( )
A.该过程平均速度大小为v0
B.运动位移的大小为
C.速度大小变为v0时,重力的瞬时功率为mgv0
D.运动时间为
解析:选BC 根据题述,经过一段时间速度大小变为v0,将该速度分解可得竖直速度等于v0,重力的瞬时功率为P=mgv0,选项C正确;由v0=gt,解得运动时间为t=,选项D错误;水平位移为x1=v0t=,竖直位移y=gt2=,运动位移的大小为x==,选项B正确;该过程平均速度大小为v==,选项A错误。
对点训练:平抛运动与斜面的结合
6.如图所示,斜面ABC放在水平面上,斜边BC长为l,倾角为30°,在斜面的上端B点沿水平方向抛出一小球,结果小球刚好落在斜面下端C点,重力加速度为g,则小球初速度v0的值为( )
A. B.
C. D.
解析:选C 平抛运动的水平位移x=lcos θ=v0t,竖直方向的位移y=lsin θ=gt2,联立可得v0=,C正确。
7.(2018·邯郸一中调研)如图,斜面AC与水平方向的夹角为α,在A点正上方与C等高处水平抛出一小球,其速度垂直于斜面落到D点,则CD与DA的比为( )
A. B.
C. D.
解析:选D 设小球水平方向的速度为v0,将D点的速度进行分解,水平方向的速度等于平抛运动的初速度,通过几何关系求解,得竖直方向的末速度为v2=,设该过程用时为t,则DA间水平距离为v0t,故DA=;CD间竖直距离为,故CD=,得=,故选D。
8.(2018·淄博实验中学月考)在斜面顶端的A点以速度v平抛一小球,经t1时间落到斜面上B点处,若在A点将此小球以速度0.5v水平抛出,经t2时间落到斜面上的C点处,以下判断正确的是( )
A.AB∶AC=2∶1 B.AB∶AC=4∶1
C.t1∶t2=4∶1 D.t1∶t2=∶1
解析:选B 平抛运动竖直方向上的位移和水平方向上的位移关系为tan θ===,则t=,可知运动的时间与初速度成正比,所以t1∶t2=2∶1。竖直方向上下落的高度h=gt2,可得竖直方向上的位移之比为4∶1。斜面上的距离s=,知AB∶AC=4∶1。故选B。
9.[多选]如图所示,一固定斜面倾角为θ,将小球A从斜面顶端以速率v0水平向右抛出,击中了斜面上的P点。将小球B从空中某点以相同速率v0水平向左抛出,恰好垂直斜面击中Q点。不计空气阻力,重力加速度为g,下列说法正确的是( )
A.若小球A在击中P点时速度方向与水平方向所夹锐角为φ,则tan θ=2tan φ
B.若小球A在击中P点时速度方向与水平方向所夹锐角为φ,则tan φ=2tan θ
C.小球A、B在空中运动的时间之比为2tan2θ∶1
D.小球A、B在空中运动的时间之比为tan2θ∶1
解析:选BC 对于小球A,有tan θ===,得t=,tan φ==,则有tan φ=2tan θ,故A错误,B正确;对于小球B,tan θ==,得t′=,所以小球A、B在空中运动的时间之比为t∶t′=2tan2 θ∶1,故C正确,D错误。
10.(2018·郑州模拟)如图所示,斜面体ABC固定在水平地面上,斜面的高AB为 m,倾角为θ=37°,且D是斜面的中点,在A点和D点分别以相同的初速度水平抛出一个小球,结果两个小球恰能落在地面上的同一点,则落地点到C点的水平距离为( )
A. m B. m
C. m D. m
解析:选D 设AB高为h,则从A点抛出的小球运动的时间t1= ,
从D点抛出的小球运动的时间t2= = ,
在水平方向上有:v0t1-v0t2=,
x=v0t1-
代入数据得,x= m,故D正确,A、B、C错误。
考点综合训练
11.(2018·连云港一检)如图所示,在水平放置的半径为R的圆柱体的正上方的P点将一个小球以水平速度v0沿垂直于圆柱体的轴线方向抛出,小球飞行一段时间后恰好从圆柱体的Q点沿切线飞过,测得O、Q连线与竖直方向的夹角为θ,那么小球完成这段飞行的时间是( )
A.t= B.t=
C.t= D.t=
解析:选C 小球做平抛运动,tan θ==,则时间t=,选项A、B错误;在水平方向上有Rsin θ=v0t,则t=,选项C正确,D错误。
12.[多选]如图所示,在距地面高为H=45 m处,有一小球A以初速度v0=10 m/s水平抛出,与此同时,在A的正下方有一物块B也以相同的初速度同方向滑出,B与水平地面间的动摩擦因数为μ=0.4,A、B均可视为质点,空气阻力不计(取g=10 m/s2)。下列说法正确的是( )
A.小球A落地时间为3 s
B.物块B运动时间为3 s
C.物块B运动12.5 m后停止
D.A球落地时,A、B相距17.5 m
解析:选ACD 根据H=gt2得,t= = s=3 s,故A正确;物块B匀减速直线运动的加速度大小a=μg=0.4×10 m/s2=4 m/s2,则B速度减为零的时间t0== s=2.5 s,滑行的距离x=t0=×2.5 m=12.5 m,故B错误,C正确;A落地时,A的水平位移xA=v0t=10×3 m=30 m,B的位移xB=x=12.5 m,则A、B相距Δx=(30-12.5) m=17.5 m,故D正确。
13.(2018·资阳模拟)如图所示,倾角为37°的粗糙斜面的底端有一质量m=1 kg的凹形小滑块,小滑块与斜面间的动摩擦因数μ=0.25。现让小滑块以某一初速度v从斜面底端上滑,同时在斜面底端正上方有一小球以初速度v0水平抛出,经过0.4 s,小球恰好垂直斜面方向落入凹槽,此时,小滑块还在上滑过程中。已知sin 37°=0.6,cos 37°=0.8,g=10 m/s2,求:
(1)小球水平抛出的速度v0;
(2)小滑块的初速度v。
解析:(1)设小球落入凹槽时竖直速度为vy,则有:
vy=gt=10×0.4 m/s=4 m/s
因此有:v0=vytan 37°=3 m/s。
(2)小球落入凹槽时的水平位移:x=v0t=3×0.4 m=1.2 m。
则滑块的位移为:s== m=1.5 m,
根据牛顿第二定律,滑块上滑的加速度为:
a=gsin 37°+μgcos 37°=8 m/s2
根据公式:s=vt-at2
v=5.35 m/s。
答案:(1)3 m/s (2)5.35 m/s
14.(2018·宿迁模拟)如图所示,练习雪道由倾斜部分AB段和水平部分BC段组成,其中倾斜雪道的倾角θ=45°,A处离水平地面的高度H=5 m。运动员每次练习时在A处都沿水平方向飞出,不计空气阻力。取g=10 m/s2。
(1)求运动员在空中运动的最长时间tm。
(2)运动员要落在AB段,求其在A处飞出时的最大速度vm大小。
(3)运动员在A处飞出的速度为v,当其落到BC段时,速度方向与竖直方向的夹角为α,试通过计算在图2中画出tan αv图像。
解析:(1)运动员在空中运动的最长时间对应运动员下落的高度H=5 m,根据H=gt2得,
tm= = s=1 s。
(2)若运动员落在斜面上,速度最大时恰好落在B点,由于θ=45°,则运动员的水平位移:x=H=5 m
则运动员在A处飞出时的最大初速度:
vm== m/s=5 m/s。
(3)运动员到达BC段时,下落的时间是1 s,则落地时竖直方向的分速度:vy=gtm=10×1 m/s=10 m/s
运动员到达BC段的过程中水平方向的分速度不变,到达B点的水平方向的分速度为5 m/s,所以到达B点时速度方向与竖直方向的夹角满足:tan α===
在BC段:tan α==v
所以画出tan αv图像如图所示。
答案:(1)1 s (2)5 m/s (3)见解析图