搜索
    上传资料 赚现金
    英语朗读宝

    2019版高考数学(理)创新大一轮江苏专用版讲义:第十二章选考部分第75讲

    2019版高考数学(理)创新大一轮江苏专用版讲义:第十二章选考部分第75讲第1页
    2019版高考数学(理)创新大一轮江苏专用版讲义:第十二章选考部分第75讲第2页
    2019版高考数学(理)创新大一轮江苏专用版讲义:第十二章选考部分第75讲第3页
    还剩11页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2019版高考数学(理)创新大一轮江苏专用版讲义:第十二章选考部分第75讲

    展开

    第75讲 不等式选讲
    考试要求 1.不等式的基本性质(B级要求);2.|ax+b|≤c,|ax+b|≥c,|x-a|+|x-b|≤c型不等式的解法(B级要求);3.不等式证明的基本方法(比较法、综合法、分析法)(B级要求);4.算术—几何平均不等式与柯西不等式(A级要求);5.利用不等式求最大(小)值(B级要求);6.运用数学归纳法证明不等式(B级要求).

    诊 断 自 测
    1.求不等式|x-1|-|x-5|0,a0即可,这种方法称为作差比较法.
    ②作商比较法:
    由a>b>0⇔>1且a>0,b>0,因此当a>0,b>0时,要证明a>b,只要证明>1即可,这种方法称为作商比较法.
    (2)综合法:
    从已知条件出发,利用不等式的有关性质或定理,经过推理论证,最终推导出所要证明的不等式成立,这种证明方法叫综合法.即“由因导果”的方法.
    (3)分析法:
    从待证不等式出发,逐步寻求使它成立的充分条件,直到将待证不等式归结为一个已成立的不等式(已知条件、定理等),从而得出要证的不等式成立,这种证明方法叫分析法.即“执果索因”的方法.
    (4)反证法和放缩法:
    ①先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立,这种方法叫做反证法.
    ②在证明不等式时,有时要把所证不等式的一边适当地放大或缩小,此利于化简并使它与不等式的另一边的关系更为明显,从而得出原不等式成立,这种方法称为放缩法.
    (5)数学归纳法:
    一般地,当要证明一个命题对于不小于某正整数n0的所有正整数n都成立时,可以用以下两个步骤:
    ①证明当n=n0时命题成立;
    ②假设当n=k (k∈N*,且k≥n0)时命题成立,证明n=k+1时命题也成立.
    在完成了这两个步骤后,就可以断定命题对于不小于n0的所有正整数都成立.这种证明方法称为数学归纳法.
    4.几个常用基本不等式
    (1)柯西不等式:
    ①柯西不等式的代数形式:设a,b,c,d均为实数,则(a2+b2)(c2+d2)≥(ac+bd)2(当且仅当ad=bc时,等号成立).
    ②柯西不等式的向量形式:设α,β为平面上的两个向量,则|α||β|≥|α·β|,等号当且仅当α,β共线时成立.
    ③柯西不等式的三角不等式:设x1,y1,x2,y2,x3,y3∈R,则+≥.
    ④柯西不等式的一般形式:设n为大于1的自然数,ai,bi (i=1,2,…,n)为实数,则(a+a+…+a)(b+b+…+b)≥(a1b1+a2b2+…+anbn)2,等号当且仅当==…=时成立(当ai=0时,约定bi=0,i=1,2,…,n).
    (2)算术—几何平均不等式
    若a1,a2,…,an为正数,则≥,当且仅当a1=a2=…=an时,等号成立.

    考点一 绝对值不等式的解法及利用绝对值不等式求最值
    【例1-1】 (2015·全国Ⅰ卷)已知函数f(x)=|x+1|-2|x-a|,a>0.
    (1)当a=1时,求不等式f(x)>1的解集;
    (2)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.
    解 (1)当a=1时,f(x)>1化为|x+1|-2|x-1|-1>0.
    当x≤-1时,不等式化为x-4>0,无解;
    当-12.
    所以a的取值范围为(2,+∞).
    规律方法 形如|x-a|+|x-b|≥c(或≤c)型的不等式主要有三种解法:(1)分段讨论法,利用绝对值号内式子对应方程的根,将数轴分为(-∞,a],(a,b],(b,
    +∞)(此处设a<b)三个部分,在每个部分上去掉绝对值号分别列出对应的不等式求解,然后取各个不等式解集的并集;(2)几何法,利用|x-a|+|x-b|>c(c>0)的几何意义:数轴上到点x1=a和x2=b的距离之和大于c的全体;(3)图象法:作出函数y1=|x-a|+|x-b|和y2=c的图象,结合图象求解.
    【例1-2】 (1)对任意x,y∈R,求|x-1|+|x|+|y-1|+|y+1|的最小值.
    (2)对于实数x,y,若|x-1|≤1,|y-2|≤1,求|x-2y+1|的最大值.
    解 (1)∵x,y∈R,
    ∴|x-1|+|x|≥|(x-1)-x|=1,
    |y-1|+|y+1|≥|(y-1)-(y+1)|=2,
    ∴|x-1|+|x|+|y-1|+|y+1|≥1+2=3.
    ∴|x-1|+|x|+|y-1|+|y+1|的最小值为3.
    (2)|x-2y+1|=|(x-1)-2(y-1)|≤|x-1|+|2(y-2)+2|≤1+2|y-2|+2≤5,
    即|x-2y+1|的最大值为5.
    规律方法 求含绝对值的函数最值时,常用的方法有三种
    (1)利用绝对值的几何意义.
    (2)利用绝对值三角不等式,即|a|+|b|≥|a±b|≥|a|-|b|.
    (3)利用零点分区间法.
    考点二 绝对值不等式的综合应用
    【例2】 (2016·全国Ⅱ卷)已知函数f(x)=+,M为不等式f(x)

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map