![2020年高考物理新课标第一轮总复习讲义:第六章第二讲 碰撞、反冲与动量守恒定律第1页](http://img-preview.51jiaoxi.com/3/6/5755838/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2020年高考物理新课标第一轮总复习讲义:第六章第二讲 碰撞、反冲与动量守恒定律第2页](http://img-preview.51jiaoxi.com/3/6/5755838/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2020年高考物理新课标第一轮总复习讲义:第六章第二讲 碰撞、反冲与动量守恒定律第3页](http://img-preview.51jiaoxi.com/3/6/5755838/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2020年高考物理新课标第一轮总复习讲义:第六章第二讲 碰撞、反冲与动量守恒定律
展开能力提升课第二讲 碰撞、反冲与动量守恒定律热点一 碰撞问题 (师生共研)1.碰撞的特点和分类(1)特点:①作用时间极短,内力远大于外力,满足动量守恒.②满足能量不增加原理.③必须符合一定的物理情境.(2)分类 动量是否守恒机械能是否守恒弹性碰撞守恒守恒非弹性碰撞守恒有损失完全非弹性碰撞守恒损失最大2.碰撞现象满足的规律(1)动量守恒定律.(2)机械能不增加.(3)速度要合理:①若碰前两物体同向运动,则应有v后>v前,碰后原来在前的物体速度一定增大,若碰后两物体同向运动,则应有v前′≥v后′.②碰前两物体相向运动,碰后两物体的运动方向不可能都不改变.[典例1] [弹性碰撞] (2016·全国卷Ⅲ) 如图,水平地面上有两个静止的小物块a和b,其连线与墙垂直;a和b相距l,b与墙之间也相距l;a的质量为m,b的质量为m.两物块与地面间的动摩擦因数均相同.现使a以初速度v0向右滑动.此后a与b发生弹性碰撞,但b没有与墙发生碰撞.重力加速度大小为g.求物块与地面间的动摩擦因数满足的条件.解析:设物块与地面间的动摩擦因数为μ.若要物块a、b能够发生碰撞,应有mv>μmgl①即μ<②设在a、b发生弹性碰撞前的瞬间,a的速度大小为v1.由能量守恒有mv=mv+μmgl③设在a、b碰撞后的瞬间,a、b的速度大小分别为v1′、v2′,由动量守恒和能量守恒有mv1=mv1′+mv2′④mv=mv1′2+(m)v2′2⑤联立④⑤式解得v2′=v1⑥由题意知,b没有与墙发生碰撞,由功能关系可知(m)v2′2≤μmgl⑦联立③⑥⑦式,可得μ≥⑧联立②⑧式,a与b发生弹性碰撞,但b没有与墙发生碰撞的条件为≤μ<.答案:≤μ<[反思总结]碰撞问题的解题策略1.抓住碰撞的特点和不同种类碰撞满足的条件,列出相应方程求解.2.可熟记一些公式,例如“一动一静”模型中,两物体发生弹性正碰后的速度满足:v1=v0、v2=v0.3.熟记弹性正碰的一些结论,例如,当两球质量相等时,两球碰撞后交换速度;当m1≫m2,且v20=0时,碰后质量大的速率不变,质量小的速率为2v.当m1≪m2,且v20=0时,碰后质量小的球原速率反弹.1-1.[碰撞现象的分析] (多选)如图所示,动量分别为pA=12 kg·m/s、pB=13 kg·m/s的两个小球A、B在光滑的水平面上沿一直线向右运动,经过一段时间后两球发生正碰,分别用ΔpA、ΔpB表示两小球动量的变化量,则下列选项中可能正确的是( )A.ΔpA=-3 kg·m/s,ΔpB=3 kg·m/sB.ΔpA=-2 kg·m/s,ΔpB=2 kg·m/sC.ΔpA=- 24 kg·m/s,ΔpB=24 kg·m/sD.ΔpA=3 kg·m/s,ΔpB=-3 kg·m/s答案:AB 1-2.[非弹性碰撞] 如图,光滑水平直轨道上有三个质量均为m的物块A、B、C.B的左侧固定一轻弹簧(弹簧左侧的挡板质量不计).设A以速度v0朝B运动,压缩弹簧;当A、B速度相等时,B与C恰好相碰并粘接在一起,然后继续运动.假设B和C碰撞过程时间极短,求从A开始压缩弹簧直至与弹簧分离的过程中:(1)整个系统损失的机械能;(2)弹簧被压缩到最短时的弹性势能.解析:(1)从A压缩弹簧到A与B具有相同速度v1时,对A、B与弹簧组成的系统,由动量守恒定律得mv0=2mv1①此时B与C发生完全非弹性碰撞,设碰撞后的瞬时速度为v2,损失的机械能为ΔE.对B、C组成的系统,由动量守恒定律和能量守恒定律得mv1=2mv2②mv=ΔE+(2m)v③联立①②③式得ΔE=mv.④(2)由②式可知v2<v1,A将继续压缩弹簧,直至A、B、C三者速度相同,设此速度为v3,此时弹簧被压缩至最短,其弹性势能为Ep.由动量守恒定律和能量守恒定律得mv0=3mv3⑤mv-ΔE=(3m)v+Ep⑥联立④⑤⑥式得Ep=mv.答案:(1)mv (2)mv 1-3.[弹性碰撞] (2015·全国卷Ⅰ)如图,在足够长的光滑水平面上,物体A、B、C位于同一直线上,A位于B、C之间.A的质量为m,B、C的质量都为M,三者均处于静止状态.现使A以某一速度向右运动,求m和M之间应满足什么条件,才能使A只与B、C各发生一次碰撞.设物体间的碰撞都是弹性的.解析:A向右运动与C发生第一次碰撞,碰撞过程中,系统的动量守恒、机械能守恒.设速度方向向右为正,开始时A的速度为v0,第一次碰撞后C的速度为vC1,A的速度为vA1.由动量守恒定律和机械能守恒定律得mv0=mvA1+MvC1①mv=mv+Mv②联立①②式得vA1=v0③vC1=v0④如果m>M,第一次碰撞后,A与C速度同向,且A的速度小于C的速度,不可能与B发生碰撞;如果m=M,第一次碰撞后,A停止,C以A碰前的速度向右运动,A不可能与B发生碰撞;所以只需考虑m<M的情况.第一次碰撞后,A反向运动与B发生碰撞.设与B发生碰撞后,A的速度为vA2,B的速度为vB1,同样有vA2=vA1=()2v0⑤根据题意,要求A只与B、C各发生一次碰撞,应有vA2≤vC1⑥联立④⑤⑥式得m2+4mM-M2≥0解得m≥(-2)M另一解m≤-(+2)M舍去.所以,m和M应满足的条件为(-2)M≤m<M.答案:(-2)M≤m<M热点二 反冲、爆炸问题 (自主学习)1.爆炸的特点(1)动量守恒:由于爆炸是在极短的时间内完成的,爆炸时物体间的相互作用力远远大于受到的外力,所以在爆炸过程中,系统的总动量守恒.(2)动能增加:在爆炸过程中,由于有其他形式的能量(如化学能)转化为动能,所以爆炸后系统的总动能增加.(3)位移不变:爆炸的时间极短,因而作用过程中物体运动的位移很小,一般可忽略不计,可以认为爆炸后仍然从爆炸时的位置以新的动量开始运动.2.反冲(1)现象:物体的不同部分在内力的作用下向相反方向运动.(2)特点:一般情况下,物体间的相互作用力(内力)较大,因此系统动量往往有以下几种情况:①动量守恒;②动量近似守恒;③某一方向动量守恒;④反冲运动中机械能往往不守恒.2-1.[水平方向的反冲问题] 一枚火箭搭载着卫星以速率v0进入太空预定位置,由控制系统使箭体与卫星分离.已知前部分的卫星质量为m1,后部分的箭体质量为m2,分离后箭体以速率v2沿火箭原方向飞行.若忽略空气阻力及分离前后系统质量的变化,则分离后卫星的速率v1为( )A.v0-v2 B.v0+v2C.v0-v2 D.v0+(v0-v2)答案:D2-2.[竖直方向的反冲问题] 将静置在地面上、质量为M(含燃料)的火箭模型点火升空,在极短时间内以相对地面的速度v0竖直向下喷出质量为m的炽热气体.忽略喷气过程重力和空气阻力的影响,则喷气结束时火箭模型获得的速度大小是( )A.v0 B.v0C.v0 D.v0答案:D2-3.[爆炸问题] 一弹丸在飞行到距离地面5 m高时仅有水平速度v=2 m/s,爆炸成为甲、乙两块水平飞出,甲、乙的质量之比为3∶1,不计质量损失,取重力加速度g=10 m/s2,则下列图中两块弹片飞行的轨迹可能正确的是( )解析:弹丸爆炸瞬间爆炸力远大于外力,故爆炸瞬间动量守恒.因两弹片均水平飞出,飞行时间t==1 s.取向右为正方向,由水平速度v=知,A中,v甲=2.5 m/s,v乙=-0.5 m/s;B中,v甲=2.5 m/s,v乙=0.5 m/s;C中,v甲=1 m/s,v乙=2 m/s;D中,v甲=-1 m/s,v乙=2 m/s.因爆炸瞬间动量守恒,故mv=m甲v甲+m乙v乙,其中m甲=m,m乙=m,v=2 m/s,代入数值计算知B正确.答案:B热点三 动量与能量综合问题 (师生共研)1.解动力学问题的三个基本观点(1)力的观点:运用牛顿定律结合运动学知识解题,可处理匀变速运动问题.(2)能量观点:用动能定理和能量守恒观点解题,可处理非匀变速运动问题.(3)动量观点:用动量守恒观点解题,可处理非匀变速运动问题.2.利用“动量和能量”观点解题的技巧(1)若研究对象为一个系统,应优先考虑应用动量守恒定律和能量守恒定律(机械能守恒定律).(2)若研究对象为单一物体,且涉及功和位移问题时,应优先考虑动能定理.(3)因为动量守恒定律、能量守恒定律(机械能守恒定律)、动能定理都只考查一个物理过程的始末两个状态有关物理量间的关系,对过程的细节不予细究,这正是它们的方便之处.特别对于变力做功问题,就更显示出它们的优越性.[典例2] (2016·全国卷Ⅱ)如图,光滑冰面上静止放置一表面光滑的斜面体,斜面体右侧一蹲在滑板上的小孩和其面前的冰块均静止于冰面上.某时刻小孩将冰块以相对冰面3 m/s的速度向斜面体推出,冰块平滑地滑上斜面体,在斜面体上上升的最大高度为h=0.3 m(h小于斜面体的高度).已知小孩与滑板的总质量为m1=30 kg,冰块的质量为m2=10 kg,小孩与滑板始终无相对运动.取重力加速度的大小g=10 m/s2.(1)求斜面体的质量;(2)通过计算判断,冰块与斜面体分离后能否追上小孩?解析:(1)规定向右为速度正方向.冰块在斜面体上运动到最大高度时两者达到共同速度,设此共同速度为v,斜面体的质量为m3.由水平方向动量守恒和机械能守恒定律得m2v20=(m2+m3)v①m2v=(m2+m3)v2+m2gh②式中v20=-3 m/s为冰块推出时的速度.联立①②式并代入题给数据得m3=20 kg③(2)设小孩推出冰块后的速度为v1,由动量守恒定律有m1v1+m2v20=0④代入数据得v1=1 m/s⑤设冰块与斜面体分离后的速度分别为v2和v3,由动量守恒和机械能守恒定律有m2v20=m2v2+m3v3⑥m2v=m2v+m3v⑦联立③⑥⑦式并代入数据得v2=1 m/s由于冰块与斜面体分离后的速度与小孩推出冰块后的速度相同且处在后方,故冰块不能追上小孩.答案:见解析3-1.[动量定理与动能定理综合]某快递公司分拣邮件的水平传输装置如图所示,皮带在电动机的带动下保持v=1 m/s的恒定速度向右运动,现将一质量为m=2 kg的邮件轻放在皮带上,邮件和皮带间的动摩擦因数μ=0.5.设皮带足够长,取g=10 m/s2,在邮件与皮带发生相对滑动的过程中,求:(1)邮件滑动的时间t;(2)邮件对地的位移大小x;(3)邮件与皮带间的摩擦力对皮带做的功W.解析:(1)设邮件放到皮带上与皮带发生相对滑动过程中受到的滑动摩擦力为F,则F=μmg①取向右为正方向,对邮件应用动量定理,有Ft=mv-0②由①②式并代入数据得t=0.2 s③(2)邮件与皮带发生相对滑动的过程中,对邮件应用动能定理,有Fx=mv2-0④由①④式并代入数据得x=0.1 m⑤(3)邮件与皮带发生相对滑动的过程中,设皮带相对地面的位移为s,则s=vt⑥摩擦力对皮带做的功W=-Fs⑦由①③⑥⑦式并代入数据得W=-2 J.答案:(1)0.2 s (2)0.1 m (3)-2 J3-2.[动量守恒与动能定理综合] 在粗糙的水平桌面上有两个静止的木块A和B,两者相距为d.现给A一初速度,使A与B发生弹性正碰,碰撞时间极短.当两木块都停止运动后,相距仍然为d.已知两木块与桌面之间的动摩擦因数均为μ,B的质量为A的2倍,重力加速度大小为g.求A的初速度大小.解析:以A碰前速度方向为正方向.设发生碰撞前瞬间A的速度大小为v,在碰撞后的瞬间,A和B的速度分别为v1和v2,由动量守恒定律和能量守恒定律,得mv=mv1+(2m)v2①mv2=mv+(2m)v②由①②式得v1=-③设碰后A和B运动的距离分别为d1和d2,由动能定理有μmgd1=mv④μ(2m)gd2=(2m)v⑤由题意得d=d1+d2⑥设A的初速度大小为v0,由动能定理得μmgd=mv-mv2⑦联立②至⑦式得v0= .答案:1.(2017·全国卷Ⅰ)将质量为1.00 kg的模型火箭点火升空,50 g燃烧的燃气以大小为600 m/s的速度从火箭喷口在很短时间内喷出.在燃气喷出后的瞬间,火箭的动量大小为(喷出过程中重力和空气阻力可忽略)( A )A.30 kg·m/s B.5.7×102 kg·m/sC.6.0×102 kg·m/s D.6.3×102 kg·m/s2.如图所示,光滑水平面上有大小相同的A、B两球在同一直线上运动.两球质量关系为mB=2mA,规定向右为正方向,A、B两球的动量均为6 kg·m/s,运动中两球发生碰撞,碰撞后A球的动量增量为-4 kg·m/s,则( A )A.左方是A球,碰撞后A、B两球速度大小之比为2∶5B.左方是A球,碰撞后A、B两球速度大小之比为1∶10C.右方是A球,碰撞后A、B两球速度大小之比为2∶5D.右方是A球,碰撞后A、B两球速度大小之比为1∶103.(多选)(2019·莆田一中月考)向空中发射一物体(不计空气阻力),当物体的速度恰好沿水平方向时,物体炸裂为a、b两块.若质量较大的a的速度方向仍沿原来的方向,则( CD )A.b的速度方向一定与原速度方向相反B.从炸裂到落地这段时间里,a飞行的水平距离一定比b的大C.a、b一定同时到达地面D.炸裂的过程中,a、b的动量变化大小一定相等解析:在炸裂过程中,由于重力远小于内力,系统的动量守恒.炸裂前物体的速度沿水平方向,炸裂后a的速度沿原来的水平方向,根据动量守恒定律判断出来b的速度一定沿水平方向,但不一定与原速度方向相反,取决于a的动量与物体原来动量的大小关系,A错误;a、b都做平抛运动,飞行时间相同,由于初速度大小关系无法判断,所以a飞行的水平距离不一定比b的大,B错误;a、b都做平抛运动,竖直方向做自由落体运动,由于高度相同,飞行时间一定相同,a、b一定同时到达水平地面,C正确;在炸裂过程中,a,b受到爆炸力大小相等,作用时间相同,则爆炸力的冲量大小一定相等,即炸裂的过程中,a、b的动量变化大小一定相等,D正确.4.如图所示,固定的圆弧轨道与水平面平滑连接,轨道与水平面均光滑,质量为m的物块B与轻质弹簧拴接静止在水平面上,弹簧右端固定.质量为3m的物块A从圆弧轨道上距离水平面高h处由静止释放,与B碰撞后推着B一起运动但与B不粘连.求:(1)弹簧的最大弹性势能;(2)A与B第一次分离后,物块A沿圆弧面上升的最大高度.解析:(1)A下滑与B碰撞前,根据机械能守恒得3mgh=×3mvA与B碰撞,根据动量守恒得3mv1=4mv2弹簧最短时弹性势能最大,系统的动能转化为弹性势能,根据能量守恒得Epmax=×4mv=mgh(2)根据题意,A与B分离时A的速度大小为v2A与B分离后沿圆弧面上升到最高点的过程中,根据机械能守恒得3mgh′=×3mv解得h′=h.答案:(1)mgh (2)h
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)