|学案下载
搜索
    上传资料 赚现金
    2020版高考新创新一轮复习数学(理)通用版讲义:第九章第八节 第2课时 解题上——5大技法破解“计算繁而杂”这一难题
    立即下载
    加入资料篮
    2020版高考新创新一轮复习数学(理)通用版讲义:第九章第八节 第2课时 解题上——5大技法破解“计算繁而杂”这一难题01
    2020版高考新创新一轮复习数学(理)通用版讲义:第九章第八节 第2课时 解题上——5大技法破解“计算繁而杂”这一难题02
    2020版高考新创新一轮复习数学(理)通用版讲义:第九章第八节 第2课时 解题上——5大技法破解“计算繁而杂”这一难题03
    还剩11页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2020版高考新创新一轮复习数学(理)通用版讲义:第九章第八节 第2课时 解题上——5大技法破解“计算繁而杂”这一难题

    展开
    第2课时 解题上——5大技法破解“计算繁而杂”这一难题
    中学解析几何是将几何图形置于直角坐标系中,用方程的观点来研究曲线,体现了用代数的方法解决几何问题的优越性,但有时运算量过大,或需繁杂的讨论,这些都会影响解题的速度,甚至会中止解题的过程,达到“望题兴叹”的地步.特别是高考过程中,在规定的时间内,保质保量完成解题的任务,计算能力是一个重要的方面.因此,本讲从以下5个方面探索减轻运算量的方法和技巧,合理简化解题过程,优化思维过程,达到快准解题.

    回归定义,以逸待劳
    回归定义的实质是重新审视概念,并用相应的概念解决问题,是一种朴素而又重要的策略和思想方法.圆锥曲线的定义既是有关圆锥曲线问题的出发点,又是新知识、新思维的生长点.对于相关的圆锥曲线中的数学问题,若能根据已知条件,巧妙灵活应用定义,往往能达到化难为易、化繁为简、事半功倍的效果.
    [典例] 如图,F1,F2是椭圆C1:+y2=1与双曲线C2的公共焦点,A,B分别是C1,C2在第二、四象限的公共点.若四边形AF1BF2为矩形,则C2的离心率是(  )
    A.           B.
    C. D.
    [解题观摩] 由已知,得F1(-,0),F2(,0),
    设双曲线C2的实半轴长为a,
    由椭圆及双曲线的定义和已知,
    可得解得a2=2,
    故a=.所以双曲线C2的离心率e==.
    [答案] D
    [题后悟通]
    本题巧妙运用椭圆和双曲线的定义建立|AF1|,|AF2|的等量关系,从而快速求出双曲线实半轴长a的值,进而求出双曲线的离心率,大大降低了运算量.  

    [针对训练]
    1.如图,设抛物线y2=4x的焦点为F,不经过焦点的直线上有三个不同的点A,B,C,其中点A,B在抛物线上,点C在y轴上,则△BCF与△ACF的面积之比是(  )
    A.
    B.
    C.
    D.
    解析:选A 由题可得====,故选A.
    2.抛物线y2=4mx(m>0)的焦点为F,点P为该抛物线上的动点,若点A(-m,0),则的最小值为________.
    解析:设点P的坐标为(xP,yP),由抛物线的定义,知|PF|=xP+m,
    又|PA|2=(xP+m)2+y=(xP+m)2+4mxP,
    则2==≥=(当且仅当xP=m时取等号),
    所以≥,
    所以的最小值为.
    答案:


    设而不求,金蝉脱壳

    设而不求是解析几何解题的基本手段,是比较特殊的一种思想方法,其实质是整体结构意义上的变式和整体思想的应用.设而不求的灵魂是通过科学的手段使运算量最大限度地减少,通过设出相应的参数,利用题设条件加以巧妙转化,以参数为过渡,设而不求.
    [典例] 已知椭圆E:+=1(a>b>0)的右焦点为F(3,0),过点F的直线交E于A,B两点.若AB的中点坐标为(1,-1),则E的标准方程为(  )
    A.+=1 B.+=1
    C.+=1 D.+=1
    [解题观摩] 设A(x1,y1),B(x2,y2),
    则x1+x2=2,y1+y2=-2,
    ①-②得+=0,
    所以kAB==-=.
    又kAB==,所以=.
    又9=c2=a2-b2,
    解得b2=9,a2=18,
    所以椭圆E的方程为+=1.
    [答案] D
    [题后悟通]
    (1)本题设出A,B两点的坐标,却不求出A,B两点的坐标,巧妙地表达出直线AB的斜率,通过将直线AB的斜率“算两次”建立几何量之间的关系,从而快速解决问题.
    (2)在运用圆锥曲线问题中设而不求的方法技巧时,需要做到:①凡是不必直接计算就能更简洁地解决问题的,都尽可能实施“设而不求”;②“设而不求”不可避免地要设参、消参,而设参的原则是宜少不宜多.  
    [针对训练]
    1.已知O为坐标原点,F是椭圆C:+=1(a>b>0)的左焦点,A,B分别为C的左、右顶点.P为C上一点,且PF⊥x轴.过点A的直线l与线段PF交于点M,与y轴交于点E,若直线BM经过OE的中点,则C的离心率为(  )
    A. B.
    C. D.
    解析:选A 设OE的中点为G,由题意设直线l的方程为y=k(x+a),分别令x=-c与x=0得|FM|=k(a-c),|OE|=ka,由△OBG∽△FBM,得=,即=,整理得=,所以椭圆C的离心率e=,故选A.
    2.过点M(1,1)作斜率为-的直线与椭圆C:+=1(a>b>0)相交于A,B两点,若M是线段AB的中点,则椭圆C的离心率等于________.
    解析:设A(x1,y1),B(x2,y2),则
    ∴+=0,
    ∴=-·.
    ∵=-,x1+x2=2,y1+y2=2,
    ∴-=-,∴a2=2b2.
    又∵b2=a2-c2,∴a2=2(a2-c2),∴a2=2c2,∴=.
    即椭圆C的离心率e=.
    答案:

    巧设参数,变换主元
    换元引参是一种重要的数学方法,特别是解析几何中的最值问题、不等式问题等,利用换元引参使一些关系能够相互联系起来,激活了解题的方法,往往能化难为易,达到事半功倍.
    常见的参数可以选择点的坐标、直线的斜率、直线的倾斜角等.在换元过程中,还要注意代换的等价性,防止扩大或缩小原来变量的取值范围或改变原题条件.
    [典例] 设椭圆+=1(a>b>0)的左、右顶点分别为A,B,点P在椭圆上且异于A,B两点,O为坐标原点.若|AP|=|OA|,证明直线OP的斜率k满足|k|>.
    [解题观摩] 法一:依题意,直线OP的方程为y=kx,设点P的坐标为(x0,y0).
    联立消去y0并整理,得x=.①
    由|AP|=|OA|,A(-a,0)及y0=kx0,
    得(x0+a)2+k2x=a2,
    整理得(1+k2)x+2ax0=0.
    而x0≠0,于是x0=,
    代入①,整理得(1+k2)2=4k22+4.
    又a>b>0,故(1+k2)2>4k2+4,
    即k2+1>4,因此k2>3,所以|k|>.
    法二:依题意,直线OP的方程为y=kx,
    可设点P的坐标为(x0,kx0).
    由点P在椭圆上,得+=1.
    因为a>b>0,kx0≠0,所以+<1,
    即(1+k2)x<a2.②
    由|AP|=|OA|及A(-a,0),得(x0+a)2+k2x=a2,
    整理得(1+k2)x+2ax0=0,于是x0=,
    代入②,得(1+k2)·<a2,
    解得k2>3,所以|k|>.
    法三:设P(acos θ,bsin θ)(0≤θ<2π),
    则线段OP的中点Q的坐标为.
    |AP|=|OA|⇔AQ⊥OP⇔kAQ×k=-1.
    又A(-a,0),所以kAQ=,
    即bsin θ-akAQcos θ=2akAQ.
    从而可得|2akAQ|≤ <a,
    解得|kAQ|<,故|k|=>.
    [题后悟通]
    求解本题利用椭圆的参数方程,可快速建立各点之间的联系,降低运算量.  
    [针对训练]
    设直线l与抛物线y2=4x相交于A,B两点,与圆C:(x-5)2+y2=r2(r>0)相切于点M,且M为线段AB的中点,若这样的直线l恰有4条,求r的取值范围.
    解:不妨设直线l的方程为x=ty+m,
    A(x1,y1),B(x2,y2),
    代入抛物线y2=4x并整理得y2-4ty-4m=0,
    则有Δ=16t2+16m>0,y1+y2=4t,y1y2=-4m,
    那么x1+x2=(ty1+m)+(ty2+m)=4t2+2m,
    可得线段AB的中点M(2t2+m,2t),
    而由题意可得直线AB与直线MC垂直,
    即kMC·kAB=-1,可得·=-1,整理得m=3-2t2(当t≠0时),
    把m=3-2t2代入Δ=16t2+16m>0,
    可得3-t2>0,即0<t2<3,
    又由于圆心到直线的距离等于半径,
    即d===2=r,
    而由0<t2<3可得2<r<4.


    妙借向量,无中生有

    平面向量是衔接代数与几何的纽带,沟通“数”与“形”,融数、形于一体,是数形结合的典范,具有几何形式与代数形式的双重身份,是数学知识的一个交汇点和联系多项知识的媒介.妙借向量,可以有效提升圆锥曲线的解题方向与运算效率,达到良好效果.
    [典例] 如图,在平面直角坐标系xOy中,F是椭圆+=1(a>b>0)的右焦点,直线y=与椭圆交于B,C两点,且∠BFC=90°,则该椭圆的离心率是________.
    [解题观摩] 把y=代入椭圆+=1,
    可得x=±a,那么B,C,
    而F(c,0),
    那么=,=,
    又∠BFC=90°,
    故有·=·=c2-a2+b2=c2-a2+(a2-c2)=c2-a2=0,
    则有3c2=2a2,所以该椭圆的离心率为e==.
    [答案] 
    [题后悟通]
    本题通过相关向量坐标的确定,结合∠BFC=90°,巧妙借助平面向量的坐标运算来转化圆锥曲线中的相关问题,从形入手转化为相应数的形式,简化运算.  
    [针对训练]
    已知椭圆C的标准方程为+=1,圆O的方程为x2+y2=2,设P,Q分别是椭圆C和圆O上位于y轴两侧的动点,若直线PQ与x轴平行,直线AP,BP与y轴的交点记为M,N,试判断∠MQN是否为定值,若是,请证明你的结论;若不是,请举出反例说明.

    解:∠MQN是定值90°,证明如下:
    设P(x0,y0),直线AP:y=k(x+2)(k≠0),
    令x=0可得M(0,2k),
    将+=1与y=k(x+2)联立,
    整理可得(2k2+1)x2+8k2x+8k2-4=0,
    则-2x0=,可得x0=,y0=,
    故P.
    直线BP斜率kBP==-,
    则直线BP:y=-(x-2),
    令x=0可得N,设Q(xQ,y0),
    则=(-xQ,2k-y0),=,
    由x+y=2,y0=,
    可得·=x+y+2-y0=0,
    所以QM⊥QN,故∠MQN是定值90°.

    巧用“韦达”,化繁为简

    某些涉及线段长度关系的问题可以通过解方程、求坐标,用距离公式计算长度的方法来解;但也可以利用一元二次方程,使相关的点的同名坐标为方程的根,由根与系数的关系求出两根间的关系或有关线段长度间的关系.后者往往计算量小,解题过程简捷.
    [典例] 已知椭圆+y2=1的左顶点为A,过A作两条互相垂直的弦AM,AN交椭圆于M,N两点.
    (1)当直线AM的斜率为1时,求点M的坐标;
    (2)当直线AM的斜率变化时,直线MN是否过x轴上的一定点?若过定点,请给出证明,并求出该定点;若不过定点,请说明理由.
    [解题观摩] (1)直线AM的斜率为1时,直线AM的方程为y=x+2,代入椭圆方程并化简得5x2+16x+12=0.
    解得x1=-2,x2=-,所以M.
    (2)设直线AM的斜率为k,直线AM的方程为y=k(x+2),
    联立方程
    化简得(1+4k2)x2+16k2x+16k2-4=0.
    则xA+xM=,
    xM=-xA-=2-=.
    同理,可得xN=.
    由(1)知若存在定点,则此点必为P.
    证明如下:
    因为kMP===,
    同理可计算得kPN=.
    所以直线MN过x轴上的一定点P.
    [题后悟通]
    本例在第(2)问中应用了根与系数的关系求出xM=,这体现了整体思想.这是解决解析几何问题时常用的方法,简单易懂,通过设而不求,大大降低了运算量.  
    [针对训练]
    已知椭圆C:+=1(a>b>0)的离心率为,且经过点P,左、右焦点分别为F1,F2.
    (1)求椭圆C的方程;
    (2)过F1的直线l与椭圆C相交于A,B两点,若△AF2B的内切圆半径为,求以F2为圆心且与直线l相切的圆的方程.
    解:(1)由=,得a=2c,所以a2=4c2,b2=3c2,
    将点P的坐标代入椭圆方程得c2=1,
    故所求椭圆方程为+=1.
    (2)由(1)可知F1(-1,0),设直线l的方程为x=ty-1,
    代入椭圆方程,整理得(4+3t2)y2-6ty-9=0,
    显然判别式大于0恒成立,
    设A(x1,y1),B(x2,y2),△AF2B的内切圆半径为r0,
    则有y1+y2=,y1y2=,r0=,
    所以S△AF2B=S△AF1F2+S△BF1F2=|F1F2|·|y1-y2|
    =|F1F2|·=.
    而S△AF2B=|AB|r0+|BF2|r0+|AF2|r0
    =r0(|AB|+|BF2|+|AF2|)
    =r0(|AF1|+|BF1|+|BF2|+|AF2|)
    =r0·4a=×8×=,
    所以=,解得t2=1,
    因为所求圆与直线l相切,所以半径r==,
    所以所求圆的方程为(x-1)2+y2=2.
    [课时跟踪检测]
    1.(2018·惠州二模)设F1,F2为椭圆+=1的两个焦点,点P在椭圆上,若线段PF1的中点在y轴上,则的值为(  )
    A.          B.
    C. D.
    解析:选D 如图,设线段PF1的中点为M,因为O是F1F2的中点,所以OM∥PF2,可得PF2⊥x轴,|PF2|==,|PF1|=2a-|PF2|=,=,故选D.
    2.设O为坐标原点,P是以F为焦点的抛物线y2=2px(p>0)上任意一点,M是线段PF上的点,且|PM|=2|MF|,则直线OM的斜率的最大值为(  )
    A.           B.
    C. D.1
    解析:选C 如图所示,
    设P(x0,y0)(y0>0),则y=2px0,
    即x0=.
    设M(x′,y′),由=2,
    得化简可得
    ∴直线OM的斜率k===≤=(当且仅当y0=p时取等号).
    3.(2019·合肥质检)如图,椭圆+=1(a>0)的左、右焦点分别为F1,F2,过F1的直线交椭圆于M,N两点,交y轴于点H.若F1,H是线段MN的三等分点,则△F2MN的周长为(  )
    A.20 B.10
    C.2 D.4
    解析:选D 由F1,H是线段MN的三等分点,得H是F1N的中点,又F1(-c,0), ∴点N的横坐标为c,联立方程,得得N,∴H,M.把点M的坐标代入椭圆方程得+=1,化简得c2=,又c2=a2-4,∴=a2-4,解得a2=5,∴a=.由椭圆的定义知|NF2|+|NF1|=|MF2|+|MF1|=2a,∴△F2MN的周长为|NF2|+|MF2|+|MN|=|NF2|+|MF2|+|NF1|+|MF1|=4a=4,故选D.

    4.已知双曲线-=1(a>0,b>0)的左、右焦点分别为F1(-c,0),F2(c,0),P为双曲线上任一点,且·最小值的取值范围是,则该双曲线的离心率的取值范围为(  )
    A.(1,] B.[,2]
    C.(0,] D.[2,+∞)
    解析:选B 设P(x0,y0),
    则·=(-c-x0,-y0)·(c-x0,-y0)
    =x-c2+y=a2-c2+y,
    上式当y0=0时取得最小值a2-c2,
    根据已知-c2≤a2-c2≤-c2,
    所以c2≤a2≤c2,即2≤≤4,即≤≤2,
    所以所求双曲线的离心率的取值范围是[,2].
    5.过抛物线y2=2px(p>0)的焦点F,斜率为的直线交抛物线于A,B两点,若=λ (λ>1),则λ的值为(  )
    A.5 B.4
    C. D.
    解析:选B 根据题意设A(x1,y1),B(x2,y2),
    由=λ,得=λ,
    故-y1=λy2,即λ=-.
    设直线AB的方程为y=,
    联立直线与抛物线方程,消去x,得y2-py-p2=0.
    故y1+y2=p,y1y2=-p2,
    则=++2=-,
    即-λ-+2=-.
    又λ>1,解得λ=4.
    6.中心为原点,一个焦点为F(0,5)的椭圆,截直线y=3x-2所得弦中点的横坐标为,则该椭圆方程为________.
    解析:由已知得c=5,
    设椭圆的方程为+=1,
    联立
    消去y得(10a2-450)x2-12(a2-50)x+4(a2-50)-a2(a2-50)=0,
    设直线y=3x-2与椭圆的交点坐标分别为(x1,y1),(x2,y2),
    由根与系数的关系得x1+x2=,
    由题意知x1+x2=1,即=1,解得a2=75,
    所以该椭圆方程为+=1.
    答案:+=1
    7.已知AB为圆x2+y2=1的一条直径,点P为直线x-y+2=0上任意一点,则·的最小值为________.
    解析:由题意,设A(cos θ,sin θ),P(x,x+2),
    则B(-cos θ,-sin θ),
    ∴=(cos θ-x,sin θ-x-2),
    =(-cos θ-x,-sin θ-x-2),
    ∴·=(cos θ-x)(-cos θ-x)+(sin θ-x-2)·(-sin θ-x-2)
    =x2+(x+2)2-cos2θ-sin2θ
    =2x2+4x+3
    =2(x+1)2+1,
    当且仅当x=-1,即P(-1,1)时,·取最小值1.
    答案:1
    8.(2019·武汉调研)已知A,B分别为椭圆+=1(0<b<3)的左、右顶点,P,Q是椭圆上关于x轴对称的不同两点,设直线AP,BQ的斜率分别为m,n,若点A到直线y= x的距离为1,则该椭圆的离心率为________.
    解析:根据椭圆的标准方程+=1(0<b<3)知椭圆的中心在原点,焦点在x轴上,A(-3,0),B(3,0),设P(x0,y0),Q(x0,-y0),则+=1,kAP=m=,kBQ=n=,∴mn==,∴=,∴直线y= x=x,即x-3y=0.又点A到直线y= x的距离为1,∴==1,解得b2=,∴c2=a2-b2=,∴e===.
    答案:
    9.已知椭圆C:+y2=1过点A(2,0),B(0,1)两点.设P为第三象限内一点且在椭圆C上,直线PA与y轴交于点M,直线PB与x轴交于点N,求证:四边形ABNM的面积为定值.
    解:设P(x0,y0)(x0<0,y0<0),则x+4y=4,
    又A(2,0),B(0,1),
    所以,直线PA的方程为y=(x-2),
    令x=0,得yM=-,
    从而|BM|=1-yM=1+,
    直线PB的方程为y=x+1,
    令y=0,得xN=-,
    从而|AN|=2-xN=2+,
    所以四边形ABNM的面积
    S=|AN||BM|=

    ==2,
    从而四边形ABNM的面积为定值.
    10.已知离心率为的椭圆+=1(a>b>0)的一个焦点为F,过F且与x轴垂直的直线与椭圆交于A,B两点,|AB|=.
    (1)求此椭圆的方程;
    (2)已知直线y=kx+2与椭圆交于C,D两点,若以线段CD为直径的圆过点E(-1,0),求k的值.
    解:(1)设焦距为2c,∵e==,a2=b2+c2,
    ∴=.由题意可知=,∴b=1,a=,
    ∴椭圆的方程为+y2=1.
    (2)将y=kx+2代入椭圆方程,得(1+3k2)x2+12kx+9=0,
    又直线与椭圆有两个交点,
    所以Δ=(12k)2-36(1+3k2)>0,解得k2>1.
    设C(x1,y1),D(x2,y2),
    则x1+x2=-,x1x2=.
    若以CD为直径的圆过E点,
    则·=0,
    即(x1+1)(x2+1)+y1y2=0,
    而y1y2=(kx1+2)(kx2+2)=k2x1x2+2k(x1+x2)+4,
    所以(x1+1)(x2+1)+y1y2
    =(k2+1)x1x2+(2k+1)(x1+x2)+5
    =-+5=0,
    解得k=,满足k2>1,所以k=.


    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map